IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i4d10.1007_s10845-019-01480-1.html
   My bibliography  Save this article

A data-driven decision-making optimization approach for inconsistent lithium-ion cell screening

Author

Listed:
  • Chengbao Liu

    (Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Jie Tan

    (Chinese Academy of Sciences)

  • Xuelei Wang

    (Chinese Academy of Sciences)

Abstract

Because the data generated in the complex industrial manufacturing processes is multi-sourced and heterogeneous, it brings a challenge for addressing decision-making optimization problems embedded in the whole manufacturing processes. Especially, for inconsistent lithium-ion cell screening as such a special problem, it is a tough issue to fuse data from multiple sources in a lithium-ion cell manufacturing process to screen cells for relieving the inconsistency among cells in a battery pack with multiple cells configured in series, parallel, and series-parallel. This paper proposes a data-driven decision-making optimization approach (DDDMO) for inconsistent lithium-ion cell screening, which takes into account three dynamic characteristic curves of cells, thus ensuring that the screened cells have consistent electrochemical characteristics. The DDDMO method uses the convolutional auto-encoder to extract features from different characteristics curves of lithium-ion cells through multi-channels and then the features in different channels are combined into fusion features to build a feature base. It also proposes an effective sample generation approach for imbalanced learning using the conditional generative adversarial networks to enhance the feature base, thereby efficiently training a classifier for inconsistent lithium-ion cell screening. Finally, industrial applications verify the effectiveness of the proposed approach. The results show that the missing rate of inconsistent lithium-ion cells drops by an average of 93.74% compared to the screening performance in the single dynamic characteristic of cells, and the DDDMO approach has greater accuracy for screening cells at lower time costs than the existing methods.

Suggested Citation

  • Chengbao Liu & Jie Tan & Xuelei Wang, 2020. "A data-driven decision-making optimization approach for inconsistent lithium-ion cell screening," Journal of Intelligent Manufacturing, Springer, vol. 31(4), pages 833-845, April.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:4:d:10.1007_s10845-019-01480-1
    DOI: 10.1007/s10845-019-01480-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-019-01480-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-019-01480-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiang Wang & Jianjun He & Fuxin Huang & Zhenjie Liu & Aibin Deng & Rihui Long, 2024. "A Novel Voltage-Abnormal Cell Detection Method for Lithium-Ion Battery Mass Production Based on Data-Driven Model with Multi-Source Time Series Data," Energies, MDPI, vol. 17(14), pages 1-14, July.
    2. Minyoung Lee & Joohyoung Jeon & Hongchul Lee, 2022. "Explainable AI for domain experts: a post Hoc analysis of deep learning for defect classification of TFT–LCD panels," Journal of Intelligent Manufacturing, Springer, vol. 33(6), pages 1747-1759, August.
    3. Liu, Xingtao & Tang, Qinbin & Feng, Yitian & Lin, Mingqiang & Meng, Jinhao & Wu, Ji, 2023. "Fast sorting method of retired batteries based on multi-feature extraction from partial charging segment," Applied Energy, Elsevier, vol. 351(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:4:d:10.1007_s10845-019-01480-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.