IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v31y2020i1d10.1007_s10845-018-1441-8.html
   My bibliography  Save this article

An application to Stereolithography of a feature recognition algorithm for manufacturability evaluation

Author

Listed:
  • Giampaolo Campana

    (University of Bologna)

  • Mattia Mele

    (University of Bologna)

Abstract

Additive manufacturing processes are experiencing extraordinary growth in present years. Concerning the production of goods by using this technology, expertise and know-how are today relevant while process simulation needs to be extensively validated before acquiring the necessary reliability, which is already achieved and established for a number of manufacturing processes. The objective of the present work is the development of a new algorithm for feature recognition, which is the first step towards an application of rules for manufacturability to digital models. The proposed approach was specifically conceived for design for additive manufacturing (DfAM). The method starts from a graph-based representation of geometric models that is the base for the definition of new and original geometrical entities. Then, an algorithm-based process has been identified and proposed for their detection. Eventually, these geometrical entities have been used for comparison with rules and constraints of DfAM in order to point out possible critical issues for manufacturability. A self-developed plugin software was implemented for the application of proposed procedure in Computer Aided Design systems. Several applications of a set of DfAM rules are provided and tested to validate the method by means of case studies. As a conclusion, such an application demonstrated the suitability of the approach for detections of features that are relevant to an early investigation into Stereolithography manufacturability. Presented approach could be helpful during early phases of product development for detecting critical manufacturing issues and thus for realising an assistant-tool that can help designers by displaying potential solutions to overcome them. Since the very first steps of product design, this integration of manufacturing knowledge allows for a reduction of a number of potential errors occurring during product fabrication and then for a decrease of required time for product development.

Suggested Citation

  • Giampaolo Campana & Mattia Mele, 2020. "An application to Stereolithography of a feature recognition algorithm for manufacturability evaluation," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 199-214, January.
  • Handle: RePEc:spr:joinma:v:31:y:2020:i:1:d:10.1007_s10845-018-1441-8
    DOI: 10.1007/s10845-018-1441-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-018-1441-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-018-1441-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huaxian Wei & Bijan Shirinzadeh & Xiaodong Niu & Jian Zhang & Wei Li & Alessandro Simeone, 2021. "Study of the hinge thickness deviation for a 316L parallelogram flexure mechanism fabricated via selective laser melting," Journal of Intelligent Manufacturing, Springer, vol. 32(5), pages 1411-1420, June.
    2. Ruihuan Ge & Joseph Flynn, 2022. "A computational method for detecting aspect ratio and problematic features in additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 33(2), pages 519-535, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:31:y:2020:i:1:d:10.1007_s10845-018-1441-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.