IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v29y2018i6d10.1007_s10845-015-1178-6.html
   My bibliography  Save this article

Modeling and optimization of manufacturing process performance using Modelica graphical representation and process analytics formalism

Author

Listed:
  • G. Shao

    (National Institute of Standards and Technology)

  • A. Brodsky

    (George Mason University)

  • R. Miller

    (University of Texas at Dallas)

Abstract

This paper concerns the development of a design methodology and its demonstration through a prototype system for performance modeling and optimization of manufacturing processes. The design methodology uses a Modelica simulation tool serving as the graphical user interface for manufacturing domain users such as process engineers to formulate their problems. The Process Analytics Formalism, developed at the National Institute of Standards and Technology, serves as a bridge between the Modelica classes and a commercial optimization solver. The prototype system includes (1) manufacturing model components’ libraries created by using Modelica and the Process Analytics Formalism, and (2) a translator of the Modelica classes to Process Analytics Formalism, which are then compiled to mathematical programming models and solved using an optimization solver. This paper provides an experiment toward the goal of enabling manufacturing users to intuitively formulate process performance models, solve problems using optimization-based methods, and automatically get actionable recommendations.

Suggested Citation

  • G. Shao & A. Brodsky & R. Miller, 2018. "Modeling and optimization of manufacturing process performance using Modelica graphical representation and process analytics formalism," Journal of Intelligent Manufacturing, Springer, vol. 29(6), pages 1287-1301, August.
  • Handle: RePEc:spr:joinma:v:29:y:2018:i:6:d:10.1007_s10845-015-1178-6
    DOI: 10.1007/s10845-015-1178-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-015-1178-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-015-1178-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yakun Jiang & Jihong Chen & Huicheng Zhou & Jianzhong Yang & Guangda Xu, 2020. "Nonlinear time-series modeling of feed drive system based on motion states classification," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1935-1948, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:29:y:2018:i:6:d:10.1007_s10845-015-1178-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.