IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v28y2017i4d10.1007_s10845-015-1043-7.html
   My bibliography  Save this article

Optimization and practical verification of system configuration parameter design for a photovoltaic thermal system combined with a reflector

Author

Listed:
  • Chung-Feng Jeffrey Kuo

    (National Taiwan University of Science and Technology)

  • Sheng-Siang Syu

    (National Taiwan University of Science and Technology)

  • Chung-Yang Shih

    (Kun Shan University)

  • Wei-Lun Lan

    (National Taiwan University of Science and Technology)

  • Chao-Yang Huang

    (Industrial Technology Research Institute
    National Chiao Tung University)

Abstract

This study designed and optimized the system parameters for a photovoltaic thermal system (PV/thermal system) combined with reflectors. Moreover, it discussed the gain of electrical efficiency and thermal efficiency on the system after adding two reflectors on each of the south and north sides, and adjusting the water circulation system. As the rising angle and position of the sun varies each season, in order to make this study more rigorous, experiments were conducted in four seasons of a year. The Taguchi orthogonal array was used for experimental planning, and the optimal parameters were analyzed for electrical efficiency and thermal efficiency. The analysis of variance was conducted to examine the influential parameters, and principal component analysis was used to calculate the principal component point of each experiment. The results were employed to construct a response surface methodology model. Finally, the steepest descent method was applied to obtain the optimal parameters. The reflector theory was applied to calculate the gain of solar radiation amount after installing the reflector. Moreover, the gain was inputted into the simulation software TRNSYS to simulate the electrical power output and the water temperature in the water storage tank. The confirmatory experiments of the four seasons found that the electrical energy after installing the reflector increased by 0.117–0.183 kWh, and the thermal energy increased by 1.7–2.6 $$^{\circ }\hbox {C}$$ ∘ C . The experiment confirmed that the prediction error was $$

Suggested Citation

  • Chung-Feng Jeffrey Kuo & Sheng-Siang Syu & Chung-Yang Shih & Wei-Lun Lan & Chao-Yang Huang, 2017. "Optimization and practical verification of system configuration parameter design for a photovoltaic thermal system combined with a reflector," Journal of Intelligent Manufacturing, Springer, vol. 28(4), pages 1017-1029, April.
  • Handle: RePEc:spr:joinma:v:28:y:2017:i:4:d:10.1007_s10845-015-1043-7
    DOI: 10.1007/s10845-015-1043-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-015-1043-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-015-1043-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kostic, Lj.T. & Pavlovic, T.M. & Pavlovic, Z.T., 2010. "Optimal design of orientation of PV/T collector with reflectors," Applied Energy, Elsevier, vol. 87(10), pages 3023-3029, October.
    2. Calise, Francesco & Dentice d'Accadia, Massimo & Palombo, Adolfo & Vanoli, Laura, 2013. "Dynamic simulation of a novel high-temperature solar trigeneration system based on concentrating photovoltaic/thermal collectors," Energy, Elsevier, vol. 61(C), pages 72-86.
    3. Tyagi, V.V. & Kaushik, S.C. & Tyagi, S.K., 2012. "Advancement in solar photovoltaic/thermal (PV/T) hybrid collector technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1383-1398.
    4. Kumar, Rakesh & Kaushik, S.C. & Garg, H.P., 1995. "Analytical study of collector solar-gain enhancement by multiple reflectors," Energy, Elsevier, vol. 20(6), pages 511-522.
    5. Jeffrey Kuo, Chung-Feng & Su, Te-Li & Jhang, Po-Ruei & Huang, Chao-Yang & Chiu, Chin-Hsun, 2011. "Using the Taguchi method and grey relational analysis to optimize the flat-plate collector process with multiple quality characteristics in solar energy collector manufacturing," Energy, Elsevier, vol. 36(5), pages 3554-3562.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lamnatou, Chr. & Vaillon, R. & Parola, S. & Chemisana, D., 2021. "Photovoltaic/thermal systems based on concentrating and non-concentrating technologies: Working fluids at low, medium and high temperatures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Li, W. & Paul, M.C. & Rolley, M. & Sweet, T. & Gao, M. & Baig, H. & Fernandez, E.F. & Mallick, T.K. & Montecucco, A. & Siviter, J. & Knox, A.R. & Han, G. & Gregory, D.H. & Azough, F. & Freer, R., 2017. "A coupled optical-thermal-electrical model to predict the performance of hybrid PV/T-CCPC roof-top systems," Renewable Energy, Elsevier, vol. 112(C), pages 166-186.
    3. Sharaf, Omar Z. & Orhan, Mehmet F., 2015. "Concentrated photovoltaic thermal (CPVT) solar collector systems: Part II – Implemented systems, performance assessment, and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1566-1633.
    4. Amri, Amun & Jiang, Zhong Tao & Pryor, Trevor & Yin, Chun-Yang & Djordjevic, Sinisa, 2014. "Developments in the synthesis of flat plate solar selective absorber materials via sol–gel methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 316-328.
    5. Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    6. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    7. Imtiaz Hussain, M. & Lee, Gwi Hyun & Kim, Jun-Tae, 2017. "Experimental validation of mathematical models of identical aluminum and stainless steel engineered conical solar collectors," Renewable Energy, Elsevier, vol. 112(C), pages 44-52.
    8. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    9. Shao, Nina & Ma, Liangdong & Zhang, Jili, 2020. "Experimental investigation on the performance of direct-expansion roof-PV/T heat pump system," Energy, Elsevier, vol. 195(C).
    10. Calise, Francesco & Dentice d'Accadia, Massimo & Libertini, Luigi & Quiriti, Edoardo & Vicidomini, Maria, 2017. "A novel tool for thermoeconomic analysis and optimization of trigeneration systems: A case study for a hospital building in Italy," Energy, Elsevier, vol. 126(C), pages 64-87.
    11. Ulloa, Carlos & Nuñez, José M. & Lin, Chengxian & Rey, Guillermo, 2018. "AHP-based design method of a lightweight, portable and flexible air-based PV-T module for UAV shelter hangars," Renewable Energy, Elsevier, vol. 123(C), pages 767-780.
    12. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    13. Alobaid, Mohammad & Hughes, Ben & Calautit, John Kaiser & O’Connor, Dominic & Heyes, Andrew, 2017. "A review of solar driven absorption cooling with photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 728-742.
    14. Yu, Y. & Yang, H. & Peng, J. & Long, E., 2019. "Performance comparisons of two flat-plate photovoltaic thermal collectors with different channel configurations," Energy, Elsevier, vol. 175(C), pages 300-308.
    15. Roozbeh Vaziri & Akeem Adeyemi Oladipo & Mohsen Sharifpur & Rani Taher & Mohammad Hossein Ahmadi & Alibek Issakhov, 2021. "Efficiency Enhancement in Double-Pass Perforated Glazed Solar Air Heaters with Porous Beds: Taguchi-Artificial Neural Network Optimization and Cost–Benefit Analysis," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
    16. Hossain, Farzad & Karim, Md. Rezwanul & Bhuiyan, Arafat A., 2022. "A review on recent advancements of the usage of nano fluid in hybrid photovoltaic/thermal (PV/T) solar systems," Renewable Energy, Elsevier, vol. 188(C), pages 114-131.
    17. Rounis, Efstratios Dimitrios & Athienitis, Andreas & Stathopoulos, Theodore, 2021. "Review of air-based PV/T and BIPV/T systems - Performance and modelling," Renewable Energy, Elsevier, vol. 163(C), pages 1729-1753.
    18. Good, Clara, 2016. "Environmental impact assessments of hybrid photovoltaic–thermal (PV/T) systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 234-239.
    19. Islam, Md. Parvez & Morimoto, Tetsuo, 2018. "Advances in low to medium temperature non-concentrating solar thermal technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2066-2093.
    20. Pan, Hong-Yu & Chen, Xue & Xia, Xin-Lin, 2022. "A review on the evolvement of optical-frequency filtering in photonic devices in 2016–2021," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:28:y:2017:i:4:d:10.1007_s10845-015-1043-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.