Author
Abstract
In animal feed pellets, the fat content is obtained either from the feed ingredients or is directly added during processing. Additional fat is required when the fat level in the feed ingredients is less than the desired level. This fat can be added either during the mixing process or after the pelleting process. However, adding fat at different time leads to different results. The addition of an increasing amount of fat during the mixing process decreases the pellet durability but enhances the pellet production rate. To avoid a reduction in the pellet durability, limiting the inclusion of fats in the mixer is suggested. The use of suitable fat addition ratios during mixing and after pelleting can improve the pellet quality and the production capability. Many factors significantly affect the decision of how much fat to add, such as the fiber inclusion content in the feed formulation, pellet die size, required feed durability, total required fat, and required additional fat. Due to frequent changes in the feed mix, anticipating the suitable amount of fat addition during the mixing process becomes a cumbersome task for a mill. In this paper, a model for estimating the amount of fat required in the mixer for each feed formulation is proposed. The model is based on the local linear map (LLM) and the back-propagation neural network (BPNN) methods. The LLM is used to identify which feed formulations require the addition of fat both during mixing and after pelleting, whereas the BPNN is employed for estimating the proper total fat required in the mixer, and the ratio of fat to add during the mixing process is subsequently estimated by subtracting the fat in the raw material from the total fat required in the mixer. The model is developed using data from one the largest feed mills in Thailand. The proposed model provides an accurate prediction and is practical for implementation in the mill that was studied.
Suggested Citation
Mongkon Ittiphalin & Banchar Arnonkijpanich & Supachai Pathumnakul, 2017.
"An artificial intelligence model to estimate the fat addition ratio for the mixing process in the animal feed industry,"
Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 219-228, January.
Handle:
RePEc:spr:joinma:v:28:y:2017:i:1:d:10.1007_s10845-014-0972-x
DOI: 10.1007/s10845-014-0972-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:28:y:2017:i:1:d:10.1007_s10845-014-0972-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.