IDEAS home Printed from https://ideas.repec.org/a/spr/joinma/v27y2016i3d10.1007_s10845-014-0894-7.html
   My bibliography  Save this article

Machining activity extraction and energy attributes inheritance method to support intelligent energy estimation of machining process

Author

Listed:
  • Shun Jia

    (Zhejiang University)

  • Renzhong Tang

    (Zhejiang University)

  • Jingxiang Lv

    (Zhejiang University)

Abstract

An energy-efficient intelligent manufacturing system could significantly save energy compared to traditional intelligent manufacturing systems that do not consider energy issues. Intelligent energy estimation of machining processes is the foundation of the energy-efficient intelligent manufacturing system. This paper proposes a method for machining activity extraction and energy attributes inheritance to support the intelligent energy estimation of machining processes. Fifteen machining activities and their energy attributes are defined according to their operating and energy consumption characteristics. Activities and energy attributes are extracted mainly from NC program supplemented with blank dimensional information. An effective extraction method of activities and energy attributes is the basis for the intelligent energy calculating of machining process. Based on an investigation on the extraction procedure of activities and energy attributes, energy attributes inheritance method is further discussed. Four types of energy attribute inheritance rules are summarized according to the different inheritance characteristics. Based on these four types of inheritance rules, the energy attributes can be transmitted from activity to Therblig as effective inputs of Therblig-based energy model of machining processes. The proposed methodology is finally demonstrated through two machining cases.

Suggested Citation

  • Shun Jia & Renzhong Tang & Jingxiang Lv, 2016. "Machining activity extraction and energy attributes inheritance method to support intelligent energy estimation of machining process," Journal of Intelligent Manufacturing, Springer, vol. 27(3), pages 595-616, June.
  • Handle: RePEc:spr:joinma:v:27:y:2016:i:3:d:10.1007_s10845-014-0894-7
    DOI: 10.1007/s10845-014-0894-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10845-014-0894-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10845-014-0894-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jia, Shun & Yuan, Qinghe & Lv, Jingxiang & Liu, Ying & Ren, Dawei & Zhang, Zhongwei, 2017. "Therblig-embedded value stream mapping method for lean energy machining," Energy, Elsevier, vol. 138(C), pages 1081-1098.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joinma:v:27:y:2016:i:3:d:10.1007_s10845-014-0894-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.