IDEAS home Printed from https://ideas.repec.org/a/spr/joheur/v24y2018i5d10.1007_s10732-018-9375-z.html
   My bibliography  Save this article

Fast algorithms for fragmentable items bin packing

Author

Listed:
  • Benjamin Byholm

    (Åbo Akademi University, Informationsteknologi
    Turku Centre for Computer Science)

  • Ivan Porres

    (Åbo Akademi University, Informationsteknologi
    Turku Centre for Computer Science)

Abstract

Bin packing with fragmentable items is a variant of the classic bin packing problem where items may be cut into smaller fragments. The objective is to minimize the number of item fragments, or equivalently, to minimize the number of cuts, for a given number of bins. Models based on packing fragmentable items are useful for representing finite shared resources. In this article, we present improvements to approximation and metaheuristic algorithms to obtain an optimality-preserving optimization algorithm with polynomial complexity, worst-case performance guarantees and parametrizable running time. We also present a new family of fast lower bounds and prove their worst-case performance ratios. We evaluate the performance and quality of the algorithm and the best lower bound through a series of computational experiments on representative problem instances. For the studied problem sets, one consisting of 180 problems with up to 20 items and another consisting of 450 problems with up to 1024 items, the lower bound performs no worse than 5 / 6. For the first problem set, the algorithm found an optimal solution in 92 % of all 1800 runs. For the second problem set, the algorithm found an optimal solution in 99 % of all 4500 runs. No run lasted longer than 220 ms.

Suggested Citation

  • Benjamin Byholm & Ivan Porres, 2018. "Fast algorithms for fragmentable items bin packing," Journal of Heuristics, Springer, vol. 24(5), pages 697-723, October.
  • Handle: RePEc:spr:joheur:v:24:y:2018:i:5:d:10.1007_s10732-018-9375-z
    DOI: 10.1007/s10732-018-9375-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10732-018-9375-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10732-018-9375-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Malaguti, Enrico & Monaci, Michele & Paronuzzi, Paolo & Pferschy, Ulrich, 2019. "Integer optimization with penalized fractional values: The Knapsack case," European Journal of Operational Research, Elsevier, vol. 273(3), pages 874-888.
    2. Fleszar, Krzysztof, 2022. "A MILP model and two heuristics for the Bin Packing Problem with Conflicts and Item Fragmentation," European Journal of Operational Research, Elsevier, vol. 303(1), pages 37-53.
    3. Walaa H. El-Ashmawi & Ahmad Salah & Mahmoud Bekhit & Guoqing Xiao & Khalil Al Ruqeishi & Ahmed Fathalla, 2023. "An Adaptive Jellyfish Search Algorithm for Packing Items with Conflict," Mathematics, MDPI, vol. 11(14), pages 1-28, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joheur:v:24:y:2018:i:5:d:10.1007_s10732-018-9375-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.