IDEAS home Printed from https://ideas.repec.org/a/spr/jogath/v38y2009i3p395-410.html
   My bibliography  Save this article

Existence of pure Nash equilibria in discontinuous and non quasiconcave games

Author

Listed:
  • Bich Philippe

Abstract

No abstract is available for this item.

Suggested Citation

  • Bich Philippe, 2009. "Existence of pure Nash equilibria in discontinuous and non quasiconcave games," International Journal of Game Theory, Springer;Game Theory Society, vol. 38(3), pages 395-410, November.
  • Handle: RePEc:spr:jogath:v:38:y:2009:i:3:p:395-410
    DOI: 10.1007/s00182-009-0160-y
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00182-009-0160-y
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00182-009-0160-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carmona, Guilherme, 2009. "An existence result for discontinuous games," Journal of Economic Theory, Elsevier, vol. 144(3), pages 1333-1340, May.
    2. Starr, Ross M, 1969. "Quasi-Equilibria in Markets with Non-Convex Preferences," Econometrica, Econometric Society, vol. 37(1), pages 25-38, January.
    3. Michael R. Baye & Guoqiang Tian & Jianxin Zhou, 1993. "Characterizations of the Existence of Equilibria in Games with Discontinuous and Non-quasiconcave Payoffs," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 60(4), pages 935-948.
    4. Nishimura, Kazuo & Friedman, James, 1981. "Existence of Nash Equilibrium in n Person Games without Quasi-Concavity," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 22(3), pages 637-648, October.
    5. Adib Bagh & Alejandro Jofre, 2006. "Reciprocal Upper Semicontinuity and Better Reply Secure Games: A Comment," Econometrica, Econometric Society, vol. 74(6), pages 1715-1721, November.
    6. Kostreva, M M, 1989. "Nonconvexity in Noncooperative Game Theory," International Journal of Game Theory, Springer;Game Theory Society, vol. 18(3), pages 247-259.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carmona, Guilherme & Podczeck, Konrad, 2014. "Existence of Nash equilibrium in games with a measure space of players and discontinuous payoff functions," Journal of Economic Theory, Elsevier, vol. 152(C), pages 130-178.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rabia Nessah & Guoqiang Tian, 2008. "The Existence of Equilibria in Discontinuous and Nonconvex Games," Working Papers 2008-ECO-14, IESEG School of Management, revised Mar 2010.
    2. Rabia Nessah & Guoqiang Tian, 2016. "On the existence of Nash equilibrium in discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 515-540, March.
    3. Tian, Guoqiang, 2015. "On the existence of equilibria in games with arbitrary strategy spaces and preferences," Journal of Mathematical Economics, Elsevier, vol. 60(C), pages 9-16.
    4. Nessah, Rabia & Tian, Guoqiang, 2008. "Existence of Equilibria in Discontinuous Games," MPRA Paper 41206, University Library of Munich, Germany, revised Mar 2010.
    5. Philippe Bich, 2009. "Existence of pure Nash equilibria in discontinuous and non quasiconcave games," Post-Print halshs-00426402, HAL.
    6. Rabia Nessah, 2022. "Weakly continuous security and nash equilibrium," Theory and Decision, Springer, vol. 93(4), pages 725-745, November.
    7. Scalzo, Vincenzo, 2020. "Doubly Strong Equilibrium," MPRA Paper 99329, University Library of Munich, Germany.
    8. Philip J. Reny, 2020. "Nash Equilibrium in Discontinuous Games," Annual Review of Economics, Annual Reviews, vol. 12(1), pages 439-470, August.
    9. Philippe Bich & Rida Laraki, 2012. "A Unified Approach to Equilibrium Existence in Discontinuous Strategic Games," Post-Print halshs-00717135, HAL.
    10. Rabia Nessah & Tarik Tazdait, 2019. "Quasi-Transfer Continuity and Nash Equilibrium," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 21(04), pages 1-8, December.
    11. Paulo Barelli & Idione Meneghel, 2013. "A Note on the Equilibrium Existence Problem in Discontinuous Games," Econometrica, Econometric Society, vol. 81(2), pages 813-824, March.
    12. Philip J. Reny, 2016. "Nash equilibrium in discontinuous games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 61(3), pages 553-569, March.
    13. Philippe Bich, 2008. "An extension of Reny's theorem without quasiconcavity," Working Papers halshs-00323348, HAL.
    14. Philippe Bich & Rida Laraki, 2012. "A Unified Approach to Equilibrium Existence in Discontinuous Strategic Games," Documents de travail du Centre d'Economie de la Sorbonne 12040, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    15. Philippe Bich & Rida Laraki, 2012. "A Unified Approach to Equilibrium Existence in Discontinuous Strategic Games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00717135, HAL.
    16. Philippe Bich & Rida Laraki, 2013. "On the Existence of Approximated Equilibria and Sharing-Rule Equilibria in Discontinuous Games," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00846143, HAL.
    17. Philippe Bich & Rida Laraki, 2013. "On the Existence of Approximated Equilibria and Sharing-Rule Equilibria in Discontinuous Games," Working Papers hal-00846143, HAL.
    18. Rabia Nessah, 2013. "Weakly Continuous Security in Discontinuous and Nonquasiconcave Games: Existence and Characterization," Working Papers 2013-ECO-20, IESEG School of Management.
    19. Allison, Blake A. & Bagh, Adib & Lepore, Jason J., 2018. "Sufficient conditions for weak reciprocal upper semi-continuity in mixed extensions of games," Journal of Mathematical Economics, Elsevier, vol. 74(C), pages 99-107.
    20. He, Wei & Yannelis, Nicholas C., 2016. "Existence of equilibria in discontinuous Bayesian games," Journal of Economic Theory, Elsevier, vol. 162(C), pages 181-194.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jogath:v:38:y:2009:i:3:p:395-410. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.