IDEAS home Printed from https://ideas.repec.org/a/spr/joecth/v26y2005i2p333-344.html
   My bibliography  Save this article

Remarks concerning concave utility functions on finite sets

Author

Listed:
  • Yakar Kannai

Abstract

A direct construction of concave utility functions representing convex preferences on finite sets is presented. An alternative construction in which at first directions of supergradients (“prices”) are found, and then utility levels and lengths of those supergradients are computed, is exhibited as well. The concept of a least concave utility function is problematic in this context. Copyright Springer-Verlag Berlin/Heidelberg 2005

Suggested Citation

  • Yakar Kannai, 2005. "Remarks concerning concave utility functions on finite sets," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 26(2), pages 333-344, August.
  • Handle: RePEc:spr:joecth:v:26:y:2005:i:2:p:333-344
    DOI: 10.1007/s00199-004-0545-x
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00199-004-0545-x
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00199-004-0545-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yashiv, Eran & Perets, Gadi, 2018. "Lie Symmetries and Essential Restrictions in Economic Optimization," CEPR Discussion Papers 12611, C.E.P.R. Discussion Papers.
    2. ,, 2010. "Rationalizable voting," Theoretical Economics, Econometric Society, vol. 5(1), January.
    3. Apartsin, Yevgenia & Kannai, Yakar, 2006. "Demand properties of concavifiable preferences," Journal of Mathematical Economics, Elsevier, vol. 43(1), pages 36-55, December.
    4. Chambers, Christopher P. & Echenique, Federico, 2009. "Supermodularity and preferences," Journal of Economic Theory, Elsevier, vol. 144(3), pages 1004-1014, May.
    5. Christopher Connell & Eric Rasmusen, 2012. "Concavifying the Quasiconcave," Working Papers 2012-10, Indiana University, Kelley School of Business, Department of Business Economics and Public Policy.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joecth:v:26:y:2005:i:2:p:333-344. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.