IDEAS home Printed from https://ideas.repec.org/a/spr/joecth/v26y2005i1p211-215.html
   My bibliography  Save this article

Three brief proofs of Arrow’s Impossibility Theorem

Author

Listed:
  • John Geanakoplos

Abstract

Arrow’s original proof of his impossibility theorem proceeded in two steps: showing the existence of a decisive voter, and then showing that a decisive voter is a dictator. Barbera replaced the decisive voter with the weaker notion of a pivotal voter, thereby shortening the first step, but complicating the second step. I give three brief proofs, all of which turn on replacing the decisive/pivotal voter with an extremely pivotal voter (a voter who by unilaterally changing his vote can move some alternative from the bottom of the social ranking to the top), thereby simplifying both steps in Arrow’s proof. My first proof is the most straightforward, and the second uses Condorcet preferences (which are transformed into each other by moving the bottom alternative to the top). The third proof proceeds by reinterpreting Step 1 of the first proof as saying that all social decisions are made the same way (neutrality). Copyright Springer-Verlag Berlin/Heidelberg 2005

Suggested Citation

  • John Geanakoplos, 2005. "Three brief proofs of Arrow’s Impossibility Theorem," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 26(1), pages 211-215, July.
  • Handle: RePEc:spr:joecth:v:26:y:2005:i:1:p:211-215
    DOI: 10.1007/s00199-004-0556-7
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00199-004-0556-7
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00199-004-0556-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joecth:v:26:y:2005:i:1:p:211-215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.