Author
Listed:
- Leonid Hurwicz
- Thomas Marschak
Abstract
This paper obtains finite analogues to propositions that a previous literature obtained about the informational efficiency of mechanisms whose possible messages form a continuum. Upon reaching an equilibrium message, to which all persons “agree”, a mechanism obtains an action appropriate to the organization's environment. Each person's privately observed characteristic (a part of the organization's environment) enters her agreement rule. An example is the Walrasian mechanism in an exchange economy. There a message specifies a proposed trade vector for each trader as well as a price for each non-numeraire commodity. A trader agrees if the price of each non-numeraire commodity equals her marginal utility for that commodity (at the proposed trades) divided by her marginal utility for the numeraire. At an equilibrium message, the mechanism's action consists of the trades specified in that message, and (for classic economies) those trades are Pareto-optimal and individually rational. Even though the space of environments (characteristics) is a continuum, mechanisms with a continuum of possible messages are unrealistic, since transmitting every point of a continuum is impossible. In reality, messages have to be rounded off and the number of possible messages has to be finite. Moreover, reaching a continuum mechanism's equilibrium message typically requires infinite time and that difficulty is absent if the number of possible messages is finite. The question therefore arises whether results about continuum mechanisms have finite counterparts. If we measure a continuum mechanism's communication cost by its message-space dimension, then our corresponding cost measure for a finite mechanism is the (finite) number of possible equilibrium messages. We find that if two continuum mechanisms yield the same action but the first has higher message-space dimension, then a sufficiently fine finite approximation of the first has larger error than an approximation of the second if the cost of the first approximation is no higher than the cost of the second approximation. An approximation's “error” is the largest distance between the continuum mechanism's action and the approximation's action. We obtain bounds on error. We also study the performance of Direct Revelation (DR) mechanisms relative to “indirect” mechanisms, both yielding the same action, when the environment set grows. We find that as the environment-set dimension goes to infinity, so does the extra cost of the DR approximation, if the error of the DR approximation is at least as small as the error of the indirect approximation. While the paper deals with information-processing costs and not incentives, it is related to the incentive literature, since the Revelation Principle is central to much of that literature and one of our main results is the informational inefficiency of finite Direct Revelation mechanisms. Copyright Springer-Verlag Berlin Heidelberg 2003
Suggested Citation
Leonid Hurwicz & Thomas Marschak, 2003.
"Comparing finite mechanisms,"
Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 21(4), pages 783-841, June.
Handle:
RePEc:spr:joecth:v:21:y:2003:i:4:p:783-841
DOI: 10.1007/s00199-001-0253-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the
CitEc Project, subscribe to its
RSS feed for this item.
Cited by:
- Nisan, Noam & Segal, Ilya, 2006.
"The communication requirements of efficient allocations and supporting prices,"
Journal of Economic Theory, Elsevier, vol. 129(1), pages 192-224, July.
- Marschak, Thomas, 2006.
"Organization Structure,"
MPRA Paper
81518, University Library of Munich, Germany.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joecth:v:21:y:2003:i:4:p:783-841. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.