Author
Listed:
- Jasper H. Bussemaker
(German Aerospace Center (DLR))
- Paul Saves
(Université de Toulouse
Université de Toulouse)
- Nathalie Bartoli
(Université de Toulouse
Université de Toulouse)
- Thierry Lefebvre
(Université de Toulouse
Université de Toulouse)
- Rémi Lafage
(Université de Toulouse
Université de Toulouse)
Abstract
Choosing the right system architecture for the problem at hand is challenging due to the large design space and high uncertainty in the early stage of the design process. Formulating the architecting process as an optimization problem may mitigate some of these challenges. This work investigates strategies for solving system architecture optimization (SAO) problems: expensive, black-box, hierarchical, mixed-discrete, constrained, multi-objective problems that may be subject to hidden constraints. Imputation ratio, correction ratio, correction fraction, and max rate diversity metrics are defined for characterizing hierarchical design spaces. This work considers two classes of optimization algorithms for SAO: multi-objective evolutionary algorithms such as NSGA-II, and Bayesian optimization (BO) algorithms. A new Gaussian process kernel is presented that enables modeling hierarchical categorical variables, extending previous work on modeling continuous and integer hierarchical variables. Next, a hierarchical sampling algorithm that uses design space hierarchy to group design vectors by active design variables is developed. Then, it is demonstrated that integrating more hierarchy information in the optimization algorithms yields better optimization results for BO algorithms. Several realistic single-objective and multi-objective test problems are used for investigations. Finally, the BO algorithm is applied to a jet engine architecture optimization problem. This work shows that the developed BO algorithm can effectively solve the problem with one order of magnitude less function evaluations than NSGA-II. The algorithms and problems used in this work are implemented in the open-source Python library SBArchOpt.
Suggested Citation
Jasper H. Bussemaker & Paul Saves & Nathalie Bartoli & Thierry Lefebvre & Rémi Lafage, 2025.
"System architecture optimization strategies: dealing with expensive hierarchical problems,"
Journal of Global Optimization, Springer, vol. 91(4), pages 851-895, April.
Handle:
RePEc:spr:jglopt:v:91:y:2025:i:4:d:10.1007_s10898-024-01443-8
DOI: 10.1007/s10898-024-01443-8
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:91:y:2025:i:4:d:10.1007_s10898-024-01443-8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.