IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v89y2024i1d10.1007_s10898-023-01346-0.html
   My bibliography  Save this article

Variable sample-size optimistic mirror descent algorithm for stochastic mixed variational inequalities

Author

Listed:
  • Zhen-Ping Yang

    (Jiaying University)

  • Yong Zhao

    (Chongqing Jiaotong University)

  • Gui-Hua Lin

    (Shanghai University)

Abstract

In this paper, we propose a variable sample-size optimistic mirror descent algorithm under the Bregman distance for a class of stochastic mixed variational inequalities. Different from those conventional variable sample-size extragradient algorithms to evaluate the expected mapping twice at each iteration, our algorithm requires only one evaluation of the expected mapping and hence can significantly reduce the computation load. In the monotone case, the proposed algorithm can achieve $${\mathcal {O}}(1/t)$$ O ( 1 / t ) ergodic convergence rate in terms of the expected restricted gap function and, under the strongly generalized monotonicity condition, the proposed algorithm has a locally linear convergence rate of the Bregman distance between iterations and solutions when the sample size increases geometrically. Furthermore, we derive some results on stochastic local stability under the generalized monotonicity condition. Numerical experiments indicate that the proposed algorithm compares favorably with some existing methods.

Suggested Citation

  • Zhen-Ping Yang & Yong Zhao & Gui-Hua Lin, 2024. "Variable sample-size optimistic mirror descent algorithm for stochastic mixed variational inequalities," Journal of Global Optimization, Springer, vol. 89(1), pages 143-170, May.
  • Handle: RePEc:spr:jglopt:v:89:y:2024:i:1:d:10.1007_s10898-023-01346-0
    DOI: 10.1007/s10898-023-01346-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-023-01346-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-023-01346-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:89:y:2024:i:1:d:10.1007_s10898-023-01346-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.