IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v88y2024i4d10.1007_s10898-023-01335-3.html
   My bibliography  Save this article

Robust second order cone conditions and duality for multiobjective problems under uncertainty data

Author

Listed:
  • Cao Thanh Tinh

    (Vietnam National University
    University of Information Technology)

  • Thai Doan Chuong

    (Brunel University London
    Saigon University)

Abstract

This paper studies a class of multiobjective convex polynomial problems, where both the constraint and objective functions involve uncertain parameters that reside in ellipsoidal uncertainty sets. Employing the robust deterministic approach, we provide necessary conditions and sufficient conditions, which are exhibited in relation to second order cone conditions, for robust (weak) Pareto solutions of the uncertain multiobjective optimization problem. A dual multiobjective problem is proposed to examine robust converse, robust weak and robust strong duality relations between the primal and dual problems. Moreover, we establish robust solution relationships between the uncertain multiobjective optimization program and a (scalar) second order cone programming relaxation problem of a corresponding weighted-sum optimization problem. This in particular shows that we can find a robust (weak) Pareto solution of the uncertain multiobjective optimization problem by solving a second order cone programming relaxation.

Suggested Citation

  • Cao Thanh Tinh & Thai Doan Chuong, 2024. "Robust second order cone conditions and duality for multiobjective problems under uncertainty data," Journal of Global Optimization, Springer, vol. 88(4), pages 901-926, April.
  • Handle: RePEc:spr:jglopt:v:88:y:2024:i:4:d:10.1007_s10898-023-01335-3
    DOI: 10.1007/s10898-023-01335-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-023-01335-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-023-01335-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:88:y:2024:i:4:d:10.1007_s10898-023-01335-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.