IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v88y2024i2d10.1007_s10898-023-01320-w.html
   My bibliography  Save this article

Directional shadow price in linearly constrained nonconvex optimization models

Author

Listed:
  • Tao Jie

    (University of Shanghai for Science and Technology)

  • Gao Yan

    (University of Shanghai for Science and Technology)

Abstract

The shadow price is, along with its close cousin, the Lagrange multiplier, one of the most important and fundamental concepts in operations research. However, the classical shadow prices have some significant drawbacks in nonconvex optimization models. First, the shadow prices are designed for the single resource, and are not applicable to explain the marginal utility when multiple resources are simultaneously changed. Moreover, in nonconvex optimization models, the Lagrange multipliers only provide the upper and lower bound of the shadow prices, which implies a practical difficulty in computing shadow prices. More importantly, the shadow prices are not continuous with respect to the variation of parameters of the optimization models, unless very strong assumptions are imposed. These drawbacks motivate us to develop a generalization of the shadow price, i.e., the directional shadow price, by using the lower and upper directional derivatives of the optimal value function. We also show that the minimum norm Lagrange multiplier is a kind of directional shadow price, which provides a tool for the computation of the directional shadow price. Moreover, we show that if the optimal solution set is lower semicontinuous with respect to the parameter, then the minimum norm Lagrange multiplier is continuous with respect to the variation of the parameter. Compared with other existing researches, the continuity of the minimum norm Lagrange multiplier holds under the weakest, to the best of our knowledge, conditions. The numerical examples support our results.

Suggested Citation

  • Tao Jie & Gao Yan, 2024. "Directional shadow price in linearly constrained nonconvex optimization models," Journal of Global Optimization, Springer, vol. 88(2), pages 431-460, February.
  • Handle: RePEc:spr:jglopt:v:88:y:2024:i:2:d:10.1007_s10898-023-01320-w
    DOI: 10.1007/s10898-023-01320-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-023-01320-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-023-01320-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:88:y:2024:i:2:d:10.1007_s10898-023-01320-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.