IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v88y2024i1d10.1007_s10898-022-01269-2.html
   My bibliography  Save this article

Finding groups with maximum betweenness centrality via integer programming with random path sampling

Author

Listed:
  • Tomás Lagos

    (University of Pittsburgh)

  • Oleg A. Prokopyev

    (University of Pittsburgh)

  • Alexander Veremyev

    (University of Central Florida)

Abstract

One popular approach to access the importance/influence of a group of nodes in a network is based on the notion of centrality. For a given group, its group betweenness centrality is computed, first, by evaluating a ratio of shortest paths between each node pair in a network that are “covered” by at least one node in the considered group, and then summing all these ratios for all node pairs. In this paper we study the problem of finding the most influential (or central) group of nodes (of some predefined size) in a network based on the concept of betweenness centrality. One known approach to solve this problem exactly relies on using a linear mixed-integer programming (linear MIP) model. However, the size of this MIP model (with respect to the number of variables and constraints) is exponential in the worst case as it requires computing all (or almost all) shortest paths in the network. We address this limitation by considering randomized approaches that solve a single linear MIP (or a series of linear MIPs) of a much smaller size(s) by sampling a sufficiently large number of shortest paths. Some probabilistic estimates of the solution quality provided by our approaches are also discussed. Finally, we illustrate the performance of our methods in a computational study.

Suggested Citation

  • Tomás Lagos & Oleg A. Prokopyev & Alexander Veremyev, 2024. "Finding groups with maximum betweenness centrality via integer programming with random path sampling," Journal of Global Optimization, Springer, vol. 88(1), pages 199-232, January.
  • Handle: RePEc:spr:jglopt:v:88:y:2024:i:1:d:10.1007_s10898-022-01269-2
    DOI: 10.1007/s10898-022-01269-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-022-01269-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-022-01269-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:88:y:2024:i:1:d:10.1007_s10898-022-01269-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.