IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v87y2023i2d10.1007_s10898-022-01156-w.html
   My bibliography  Save this article

Learning-augmented algorithms for online subset sum

Author

Listed:
  • Chenyang Xu

    (Zhejiang University)

  • Guochuan Zhang

    (Zhejiang University)

Abstract

As one of Karp’s 21 NP-complete problems, the subset sum problem, as well as its generalization, has been well studied. Among the rich literature, there is little work on the online version, where items arrive over list and irrevocable decisions on packing them or not must be made immediately. Under the online setting, no deterministic algorithms are competitive, while for randomized algorithms the best competitive ratio is 1/2. It is thus of great interest to improve the performance bounds for both deterministic and randomized algorithms, assuming predicted information is available in the learning-augmented model. Along this line, we revisit online subset sum by showing that, with learnable predictions, there exist learning-augmented algorithms to break through the worst-case bounds on competitive ratio. The theoretical results are also experimentally verified, where we come up with a new idea in designing experiments. Namely, we design neural networks to serve as adversaries, verifying the robustness of online algorithms. Under this framework, several networks are trained to select adversarial instances and the results show that our algorithms are competitive and robust.

Suggested Citation

  • Chenyang Xu & Guochuan Zhang, 2023. "Learning-augmented algorithms for online subset sum," Journal of Global Optimization, Springer, vol. 87(2), pages 989-1008, November.
  • Handle: RePEc:spr:jglopt:v:87:y:2023:i:2:d:10.1007_s10898-022-01156-w
    DOI: 10.1007/s10898-022-01156-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-022-01156-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-022-01156-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:87:y:2023:i:2:d:10.1007_s10898-022-01156-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.