IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v82y2022i4d10.1007_s10898-021-01075-2.html
   My bibliography  Save this article

Global sensing search for nonlinear global optimization

Author

Listed:
  • Abdel-Rahman Hedar

    (Umm Al-Qura University
    Assiut University)

  • Wael Deabes

    (Umm Al-Qura University
    Mansoura University)

  • Hesham H. Amin

    (Umm Al-Qura University
    Aswan University)

  • Majid Almaraashi

    (University of Jeddah)

  • Masao Fukushima

    (The Kyoto College of Graduate Studies for Informatics)

Abstract

Metaheuristics are powerful and generic global search methods. Most metaheuristics methods are not fully equipped with learning processes. Therefore, most of the search history is not reused in further steps of metaheuristics. The main aim of this research is to develop a general framework for automating and enhancing the search process and procedures in metaheuristics. The proposed framework, called Global Sensing Search (GSS), utilizes search memories to equip the search with applicable sensing features and adaptive learning elements to find a better solution and explore more diverse ones. Moreover, the GSS framework applies different search conditions to check the need for using suitable intensification and/or diversification strategies and also for terminating the search. An implementation of the GSS framework is proposed to alter the structure of standard genetic algorithms (GAs). Therefore, a new GA-based method called Genetic Sensing Algorithm is presented. The computational experiments show the efficiency of the proposed methods.

Suggested Citation

  • Abdel-Rahman Hedar & Wael Deabes & Hesham H. Amin & Majid Almaraashi & Masao Fukushima, 2022. "Global sensing search for nonlinear global optimization," Journal of Global Optimization, Springer, vol. 82(4), pages 753-802, April.
  • Handle: RePEc:spr:jglopt:v:82:y:2022:i:4:d:10.1007_s10898-021-01075-2
    DOI: 10.1007/s10898-021-01075-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-021-01075-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-021-01075-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Herrera, F. & Lozano, M. & Molina, D., 2006. "Continuous scatter search: An analysis of the integration of some combination methods and improvement strategies," European Journal of Operational Research, Elsevier, vol. 169(2), pages 450-476, March.
    2. Bun Theang Ong & Masao Fukushima, 2015. "Automatically Terminated Particle Swarm Optimization with Principal Component Analysis," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 171-194.
    3. Taillard, Eric D. & Gambardella, Luca M. & Gendreau, Michel & Potvin, Jean-Yves, 2001. "Adaptive memory programming: A unified view of metaheuristics," European Journal of Operational Research, Elsevier, vol. 135(1), pages 1-16, November.
    4. Pierre Hansen & Nenad Mladenović & José Moreno Pérez, 2010. "Variable neighbourhood search: methods and applications," Annals of Operations Research, Springer, vol. 175(1), pages 367-407, March.
    5. Kaelo, P. & Ali, M.M., 2007. "Integrated crossover rules in real coded genetic algorithms," European Journal of Operational Research, Elsevier, vol. 176(1), pages 60-76, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaowei Miao & Feng Yang & Ke Fu & Dongsheng Xu, 2012. "Transshipment service through crossdocks with both soft and hard time windows," Annals of Operations Research, Springer, vol. 192(1), pages 21-47, January.
    2. Gilberto F. Sousa Filho & Teobaldo L. Bulhões Júnior & Lucidio A. F. Cabral & Luiz Satoru Ochi & Fábio Protti, 2017. "New heuristics for the Bicluster Editing Problem," Annals of Operations Research, Springer, vol. 258(2), pages 781-814, November.
    3. E A Silver, 2004. "An overview of heuristic solution methods," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(9), pages 936-956, September.
    4. H. Asefi & S. Lim & M. Maghrebi & S. Shahparvari, 2019. "Mathematical modelling and heuristic approaches to the location-routing problem of a cost-effective integrated solid waste management," Annals of Operations Research, Springer, vol. 273(1), pages 75-110, February.
    5. Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2011. "A hybrid shuffled complex evolution approach with pattern search for unconstrained optimization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(9), pages 1901-1909.
    6. Astorino, Annabella & Avolio, Matteo & Fuduli, Antonio, 2022. "A maximum-margin multisphere approach for binary Multiple Instance Learning," European Journal of Operational Research, Elsevier, vol. 299(2), pages 642-652.
    7. Gläser, Sina & Stücken, Mareike, 2021. "Introduction of an underground waste container system–model and solution approaches," European Journal of Operational Research, Elsevier, vol. 295(2), pages 675-689.
    8. Olivera Janković & Stefan Mišković & Zorica Stanimirović & Raca Todosijević, 2017. "Novel formulations and VNS-based heuristics for single and multiple allocation p-hub maximal covering problems," Annals of Operations Research, Springer, vol. 259(1), pages 191-216, December.
    9. Oscar Cordón & Sergio Damas & Jose Santamaría & Rafael Martí, 2008. "Scatter Search for the Point-Matching Problem in 3D Image Registration," INFORMS Journal on Computing, INFORMS, vol. 20(1), pages 55-68, February.
    10. Amalia I. Nikolopoulou & Panagiotis P. Repoussis & Christos D. Tarantilis & Emmanouil E. Zachariadis, 2019. "Adaptive memory programming for the many-to-many vehicle routing problem with cross-docking," Operational Research, Springer, vol. 19(1), pages 1-38, March.
    11. Hideki Hashimoto & Sylvain Boussier & Michel Vasquez & Christophe Wilbaut, 2011. "A GRASP-based approach for technicians and interventions scheduling for telecommunications," Annals of Operations Research, Springer, vol. 183(1), pages 143-161, March.
    12. Ade Irawan, Chandra & Starita, Stefano & Chan, Hing Kai & Eskandarpour, Majid & Reihaneh, Mohammad, 2023. "Routing in offshore wind farms: A multi-period location and maintenance problem with joint use of a service operation vessel and a safe transfer boat," European Journal of Operational Research, Elsevier, vol. 307(1), pages 328-350.
    13. Dontas, Michael & Sideris, Georgios & Manousakis, Eleftherios G. & Zachariadis, Emmanouil E., 2023. "An adaptive memory matheuristic for the set orienteering problem," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1010-1023.
    14. Yıldız, Gazi Bilal & Soylu, Banu, 2019. "A multiobjective post-sales guarantee and repair services network design problem," International Journal of Production Economics, Elsevier, vol. 216(C), pages 305-320.
    15. Huber, Sandra & Geiger, Martin Josef, 2017. "Order matters – A Variable Neighborhood Search for the Swap-Body Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 263(2), pages 419-445.
    16. Soylu, Banu & Katip, Hatice, 2019. "A multiobjective hub-airport location problem for an airline network design," European Journal of Operational Research, Elsevier, vol. 277(2), pages 412-425.
    17. El-Bouri, A. & Azizi, N. & Zolfaghari, S., 2007. "A comparative study of a new heuristic based on adaptive memory programming and simulated annealing: The case of job shop scheduling," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1894-1910, March.
    18. Eng, KaiLun & Muhammed, Abdullah & Mohamed, Mohamad Afendee & Hasan, Sazlinah, 2020. "A hybrid heuristic of Variable Neighbourhood Descent and Great Deluge algorithm for efficient task scheduling in Grid computing," European Journal of Operational Research, Elsevier, vol. 284(1), pages 75-86.
    19. Debels, Dieter & De Reyck, Bert & Leus, Roel & Vanhoucke, Mario, 2006. "A hybrid scatter search/electromagnetism meta-heuristic for project scheduling," European Journal of Operational Research, Elsevier, vol. 169(2), pages 638-653, March.
    20. Raka Jovanovic & Tatsushi Nishi & Stefan Voß, 2017. "A heuristic approach for dividing graphs into bi-connected components with a size constraint," Journal of Heuristics, Springer, vol. 23(2), pages 111-136, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:82:y:2022:i:4:d:10.1007_s10898-021-01075-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.