IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v81y2021i3d10.1007_s10898-020-00987-9.html
   My bibliography  Save this article

Detecting optimality and extracting solutions in polynomial optimization with the truncated GNS construction

Author

Listed:
  • María López Quijorna

    (Universitat Konstanz)

Abstract

A basic closed semialgebraic subset of $${\mathbb {R}}^{n}$$ R n is defined by simultaneous polynomial inequalities $$p_{1}\ge 0,\ldots ,p_{m}\ge 0$$ p 1 ≥ 0 , … , p m ≥ 0 . We consider Lasserre’s relaxation hierarchy to solve the problem of minimizing a polynomial over such a set. These relaxations give an increasing sequence of lower bounds of the infimum. In this paper we provide a new certificate for the optimal value of a Lasserre relaxation to be the optimal value of the polynomial optimization problem. This certificate is to check if a certain matrix has a generalized Hankel form. This certificate is more general than the already known certificate of an optimal solution being flat. In case we have detected optimality we will extract the potential minimizers with a truncated version of the Gelfand–Naimark–Segal construction on the optimal solution of the Lasserre relaxation. We prove also that the operators of this truncated construction commute if and only if the matrix of this modified optimal solution is a generalized Hankel matrix. This generalization of flatness will enable us to prove, with the use of the GNS truncated construction, a result of Curto and Fialkow on the existence of quadrature rule if the optimal solution is flat and a result of Xu and Mysovskikh on the existence of a Gaussian quadrature rule if the modified optimal solution is a generalized Hankel matrix . At the end, we provide a numerical linear algebraic algorithm for detecting optimality and extracting solutions of a polynomial optimization problem.

Suggested Citation

  • María López Quijorna, 2021. "Detecting optimality and extracting solutions in polynomial optimization with the truncated GNS construction," Journal of Global Optimization, Springer, vol. 81(3), pages 559-598, November.
  • Handle: RePEc:spr:jglopt:v:81:y:2021:i:3:d:10.1007_s10898-020-00987-9
    DOI: 10.1007/s10898-020-00987-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-020-00987-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-020-00987-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Igor Klep & Markus Schweighofer, 2013. "An Exact Duality Theory for Semidefinite Programming Based on Sums of Squares," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 569-590, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abhishek Bhardwaj, 2023. "A Practical Approach to SOS Relaxations for Detecting Quantum Entanglement," Journal of Optimization Theory and Applications, Springer, vol. 198(3), pages 869-891, September.
    2. Kai Kellner & Marc E. Pfetsch & Thorsten Theobald, 2019. "Irreducible Infeasible Subsystems of Semidefinite Systems," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 727-742, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:81:y:2021:i:3:d:10.1007_s10898-020-00987-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.