IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v74y2019i3d10.1007_s10898-019-00783-0.html
   My bibliography  Save this article

Facets of a mixed-integer bilinear covering set with bounds on variables

Author

Listed:
  • Hamidur Rahman

    (Indian Institute of Technology Bombay)

  • Ashutosh Mahajan

    (Indian Institute of Technology Bombay)

Abstract

We derive a closed form description of the convex hull of mixed-integer bilinear covering set with bounds on the integer variables. This convex hull description is determined by considering some orthogonal disjunctive sets defined in a certain way. This description does not introduce any new variables, but consists of exponentially many inequalities. An extended formulation with a few extra variables and much smaller number of constraints is presented. We also derive a linear time separation algorithm for finding the facet defining inequalities of this convex hull. We study the effectiveness of the new inequalities and the extended formulation using some examples.

Suggested Citation

  • Hamidur Rahman & Ashutosh Mahajan, 2019. "Facets of a mixed-integer bilinear covering set with bounds on variables," Journal of Global Optimization, Springer, vol. 74(3), pages 417-442, July.
  • Handle: RePEc:spr:jglopt:v:74:y:2019:i:3:d:10.1007_s10898-019-00783-0
    DOI: 10.1007/s10898-019-00783-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-019-00783-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-019-00783-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Harjunkoski, Iiro & Westerlund, Tapio & Porn, Ray & Skrifvars, Hans, 1998. "Different transformations for solving non-convex trim-loss problems by MINLP," European Journal of Operational Research, Elsevier, vol. 105(3), pages 594-603, March.
    2. James E. Falk & Richard M. Soland, 1969. "An Algorithm for Separable Nonconvex Programming Problems," Management Science, INFORMS, vol. 15(9), pages 550-569, May.
    3. Hanif Sherali, 2007. "RLT: A unified approach for discrete and continuous nonconvex optimization," Annals of Operations Research, Springer, vol. 149(1), pages 185-193, February.
    4. Gau, T. & Wascher, G., 1995. "CUTGEN1: A problem generator for the standard one-dimensional cutting stock problem," European Journal of Operational Research, Elsevier, vol. 84(3), pages 572-579, August.
    5. Umetani, Shunji & Yagiura, Mutsunori & Ibaraki, Toshihide, 2003. "One-dimensional cutting stock problem to minimize the number of different patterns," European Journal of Operational Research, Elsevier, vol. 146(2), pages 388-402, April.
    6. François Vanderbeck, 2000. "Exact Algorithm for Minimising the Number of Setups in the One-Dimensional Cutting Stock Problem," Operations Research, INFORMS, vol. 48(6), pages 915-926, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamidur Rahman & Ashutosh Mahajan, 2020. "On the facet defining inequalities of the mixed-integer bilinear covering set," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(3), pages 545-575, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamidur Rahman & Ashutosh Mahajan, 2020. "On the facet defining inequalities of the mixed-integer bilinear covering set," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 92(3), pages 545-575, December.
    2. Mateus Martin & Horacio Hideki Yanasse & Luiz Leduíno Salles-Neto, 2022. "Pattern-based ILP models for the one-dimensional cutting stock problem with setup cost," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 557-582, August.
    3. Cui, Yaodong & Zhong, Cheng & Yao, Yi, 2015. "Pattern-set generation algorithm for the one-dimensional cutting stock problem with setup cost," European Journal of Operational Research, Elsevier, vol. 243(2), pages 540-546.
    4. Hajizadeh, Iman & Lee, Chi-Guhn, 2007. "Alternative configurations for cutting machines in a tube cutting mill," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1385-1396, December.
    5. Silva, Eduardo M. & Melega, Gislaine M. & Akartunalı, Kerem & de Araujo, Silvio A., 2023. "Formulations and theoretical analysis of the one-dimensional multi-period cutting stock problem with setup cost," European Journal of Operational Research, Elsevier, vol. 304(2), pages 443-460.
    6. Melega, Gislaine Mara & de Araujo, Silvio Alexandre & Jans, Raf, 2018. "Classification and literature review of integrated lot-sizing and cutting stock problems," European Journal of Operational Research, Elsevier, vol. 271(1), pages 1-19.
    7. C Alves & J M Valério de Carvalho, 2008. "New integer programming formulations and an exact algorithm for the ordered cutting stock problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(11), pages 1520-1531, November.
    8. Kelly Cristina Poldi & Silvio Alexandre Araujo, 2016. "Mathematical models and a heuristic method for the multiperiod one-dimensional cutting stock problem," Annals of Operations Research, Springer, vol. 238(1), pages 497-520, March.
    9. Aktin, Tülin & Özdemir, RIfat Gürcan, 2009. "An integrated approach to the one-dimensional cutting stock problem in coronary stent manufacturing," European Journal of Operational Research, Elsevier, vol. 196(2), pages 737-743, July.
    10. Hadj Salem, Khadija & Silva, Elsa & Oliveira, José Fernando & Carravilla, Maria Antónia, 2023. "Mathematical models for the two-dimensional variable-sized cutting stock problem in the home textile industry," European Journal of Operational Research, Elsevier, vol. 306(2), pages 549-566.
    11. Kallrath, Julia & Rebennack, Steffen & Kallrath, Josef & Kusche, Rüdiger, 2014. "Solving real-world cutting stock-problems in the paper industry: Mathematical approaches, experience and challenges," European Journal of Operational Research, Elsevier, vol. 238(1), pages 374-389.
    12. Kelly Poldi & Silvio Araujo, 2016. "Mathematical models and a heuristic method for the multiperiod one-dimensional cutting stock problem," Annals of Operations Research, Springer, vol. 238(1), pages 497-520, March.
    13. Gislaine Mara Melega & Silvio Alexandre de Araujo & Reinaldo Morabito, 2020. "Mathematical model and solution approaches for integrated lot-sizing, scheduling and cutting stock problems," Annals of Operations Research, Springer, vol. 295(2), pages 695-736, December.
    14. Umetani, Shunji & Yagiura, Mutsunori & Ibaraki, Toshihide, 2003. "One-dimensional cutting stock problem to minimize the number of different patterns," European Journal of Operational Research, Elsevier, vol. 146(2), pages 388-402, April.
    15. Cui, Yaodong & Yang, Liu & Zhao, Zhigang & Tang, Tianbing & Yin, Mengxiao, 2013. "Sequential grouping heuristic for the two-dimensional cutting stock problem with pattern reduction," International Journal of Production Economics, Elsevier, vol. 144(2), pages 432-439.
    16. Malaguti, Enrico & Medina Durán, Rosa & Toth, Paolo, 2014. "Approaches to real world two-dimensional cutting problems," Omega, Elsevier, vol. 47(C), pages 99-115.
    17. François Clautiaux & Cláudio Alves & José Valério de Carvalho, 2010. "A survey of dual-feasible and superadditive functions," Annals of Operations Research, Springer, vol. 179(1), pages 317-342, September.
    18. Wang, Danni & Xiao, Fan & Zhou, Lei & Liang, Zhe, 2020. "Two-dimensional skiving and cutting stock problem with setup cost based on column-and-row generation," European Journal of Operational Research, Elsevier, vol. 286(2), pages 547-563.
    19. Ramiro Varela & Camino Vela & Jorge Puente & María Sierra & Inés González-Rodríguez, 2009. "An effective solution for a real cutting stock problem in manufacturing plastic rolls," Annals of Operations Research, Springer, vol. 166(1), pages 125-146, February.
    20. Erjavec, J. & Gradisar, M. & Trkman, P., 2012. "Assessment of stock size to minimize cutting stock production costs," International Journal of Production Economics, Elsevier, vol. 135(1), pages 170-176.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:74:y:2019:i:3:d:10.1007_s10898-019-00783-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.