IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v67y2017i1d10.1007_s10898-016-0428-2.html
   My bibliography  Save this article

An efficient multi-objective PSO algorithm assisted by Kriging metamodel for expensive black-box problems

Author

Listed:
  • Haoxiang Jie

    (China Shipbuilding Industry Corporation
    Huazhong University of Science and Technology)

  • Yizhong Wu

    (Huazhong University of Science and Technology)

  • Jianjun Zhao

    (Huazhong University of Science and Technology)

  • Jianwan Ding

    (Huazhong University of Science and Technology)

  • Liangliang

    (Sun Yet-Sen University)

Abstract

The huge computational overhead is the main challenge in the application of community based optimization methods, such as multi-objective particle swarm optimization and multi-objective genetic algorithm, to deal with the multi-objective optimization involving costly simulations. This paper proposes a Kriging metamodel assisted multi-objective particle swarm optimization method to solve this kind of expensively black-box multi-objective optimization problems. On the basis of crowding distance based multi-objective particle swarm optimization algorithm, the new proposed method constructs Kriging metamodel for each expensive objective function adaptively, and then the non-dominated solutions of the metamodels are utilized to guide the update of particle population. To reduce the computational cost, the generalized expected improvements of each particle predicted by metamodels are presented to determine which particles need to perform actual function evaluations. The suggested method is tested on 12 benchmark functions and compared with the original crowding distance based multi-objective particle swarm optimization algorithm and non-dominated sorting genetic algorithm-II algorithm. The test results show that the application of Kriging metamodel improves the search ability and reduces the number of evaluations. Additionally, the new proposed method is applied to the optimal design of a cycloid gear pump and achieves desirable results.

Suggested Citation

  • Haoxiang Jie & Yizhong Wu & Jianjun Zhao & Jianwan Ding & Liangliang, 2017. "An efficient multi-objective PSO algorithm assisted by Kriging metamodel for expensive black-box problems," Journal of Global Optimization, Springer, vol. 67(1), pages 399-423, January.
  • Handle: RePEc:spr:jglopt:v:67:y:2017:i:1:d:10.1007_s10898-016-0428-2
    DOI: 10.1007/s10898-016-0428-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-016-0428-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-016-0428-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaohui Li & Jingfang Shen & Ziliang Cai & Yizhong Wu & Shuting Wang, 2021. "A Kriging-Assisted Multi-Objective Constrained Global Optimization Method for Expensive Black-Box Functions," Mathematics, MDPI, vol. 9(2), pages 1-20, January.
    2. Alkebsi, Khalil & Du, Wenli, 2021. "Surrogate-assisted multi-objective particle swarm optimization for the operation of CO2 capture using VPSA," Energy, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:67:y:2017:i:1:d:10.1007_s10898-016-0428-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.