IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v67y2017i1d10.1007_s10898-015-0398-9.html
   My bibliography  Save this article

Interactive model-based search with reactive resource allocation

Author

Listed:
  • Yue Sun

    (University of Florida Gainesville)

  • Alfredo Garcia

    (University of Florida Gainesville)

Abstract

We revisit the interactive model-based approach to global optimization proposed in Wang and Garcia (J Glob Optim 61(3):479–495, 2015) in which parallel threads independently execute a model-based search method and periodically interact through a simple acceptance-rejection rule aimed at preventing duplication of search efforts. In that paper it was assumed that each thread successfully identifies a locally optimal solution every time the acceptance-rejection rule is implemented. Under this stylized model of computational time, the rate of convergence to a globally optimal solution was shown to increase exponentially in the number of threads. In practice however, the computational time required to identify a locally optimal solution varies greatly. Therefore, when the acceptance-rejection rule is implemented, several threads may fail to identify a locally optimal solution. This situation calls for reallocation of computational resources in order to speed up the identification of local optima when one or more threads repeatedly fail to do so. In this paper we consider an implementation of the interactive model-based approach that accounts for real time, that is, it takes into account the possibility that several threads may fail to identify a locally optimal solution whenever the acceptance-rejection rule is implemented. We propose a modified acceptance-rejection rule that alternates between enforcing diverse search (in order to prevent duplication) and reallocation of computational effort (in order to speed up the identification of local optima). We show that the rate of convergence in real-time increases with the number of threads. This result formalizes the idea that in parallel computing, exploitation and exploration can be complementary provided relatively simple rules for interaction are implemented. We report the results from extensive numerical experiments which are illustrate the theoretical analysis of performance.

Suggested Citation

  • Yue Sun & Alfredo Garcia, 2017. "Interactive model-based search with reactive resource allocation," Journal of Global Optimization, Springer, vol. 67(1), pages 135-149, January.
  • Handle: RePEc:spr:jglopt:v:67:y:2017:i:1:d:10.1007_s10898-015-0398-9
    DOI: 10.1007/s10898-015-0398-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-015-0398-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-015-0398-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. A. Ferreiro & J. García & J. López-Salas & C. Vázquez, 2013. "An efficient implementation of parallel simulated annealing algorithm in GPUs," Journal of Global Optimization, Springer, vol. 57(3), pages 863-890, November.
    2. Jiaqiao Hu & Michael C. Fu & Steven I. Marcus, 2007. "A Model Reference Adaptive Search Method for Global Optimization," Operations Research, INFORMS, vol. 55(3), pages 549-568, June.
    3. R. Martí & J. Marcos Moreno-Vega & A. Duarte, 2010. "Advanced Multi-start Methods," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 265-281, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xi Chen & Enlu Zhou, 2015. "Population model-based optimization," Journal of Global Optimization, Springer, vol. 63(1), pages 125-148, September.
    2. Joshua Q. Hale & Enlu Zhou & Jiming Peng, 2017. "A Lagrangian search method for the P-median problem," Journal of Global Optimization, Springer, vol. 69(1), pages 137-156, September.
    3. Enlu Zhou & Shalabh Bhatnagar, 2018. "Gradient-Based Adaptive Stochastic Search for Simulation Optimization Over Continuous Space," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 154-167, February.
    4. Helin Zhu & Joshua Hale & Enlu Zhou, 2018. "Simulation optimization of risk measures with adaptive risk levels," Journal of Global Optimization, Springer, vol. 70(4), pages 783-809, April.
    5. Weiqi Li, 2011. "Seeking global edges for traveling salesman problem in multi-start search," Journal of Global Optimization, Springer, vol. 51(3), pages 515-540, November.
    6. Jie Xu & Barry L. Nelson & L. Jeff Hong, 2013. "An Adaptive Hyperbox Algorithm for High-Dimensional Discrete Optimization via Simulation Problems," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 133-146, February.
    7. Zheng Peng & Donghua Wu & Quan Zheng, 2013. "A Level-Value Estimation Method and Stochastic Implementation for Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 156(2), pages 493-523, February.
    8. Chandra Ade Irawan & Said Salhi & Kusmaningrum Soemadi, 2020. "The continuous single-source capacitated multi-facility Weber problem with setup costs: formulation and solution methods," Journal of Global Optimization, Springer, vol. 78(2), pages 271-294, October.
    9. Alan Lee & Martin Savelsbergh, 2017. "An extended demand responsive connector," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 25-50, March.
    10. Ferreiro-Ferreiro, Ana M. & García-Rodríguez, José A. & Souto, Luis & Vázquez, Carlos, 2019. "Basin Hopping with synched multi L-BFGS local searches. Parallel implementation in multi-CPU and GPUs," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 282-298.
    11. Zheng Peng & Donghua Wu & Wenxing Zhu, 2016. "The robust constant and its applications in random global search for unconstrained global optimization," Journal of Global Optimization, Springer, vol. 64(3), pages 469-482, March.
    12. Lan, Yingjie & Ball, Michael O. & Karaesmen, Itir Z. & Zhang, Jean X. & Liu, Gloria X., 2015. "Analysis of seat allocation and overbooking decisions with hybrid information," European Journal of Operational Research, Elsevier, vol. 240(2), pages 493-504.
    13. Fan, Qi & Tan, Ken Seng & Zhang, Jinggong, 2023. "Empirical tail risk management with model-based annealing random search," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 106-124.
    14. Heath, Jeffrey W. & Fu, Michael C. & Jank, Wolfgang, 2009. "New global optimization algorithms for model-based clustering," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3999-4017, October.
    15. Simona Mancini, 2013. "Multi-echelon distribution systems in city logistics," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 54, pages 1-2.
    16. Joshua Q. Hale & Helin Zhu & Enlu Zhou, 2020. "Domination Measure: A New Metric for Solving Multiobjective Optimization," INFORMS Journal on Computing, INFORMS, vol. 32(3), pages 565-581, July.
    17. Emile Glorieux & Bo Svensson & Fredrik Danielsson & Bengt Lennartson, 2017. "Constructive cooperative coevolution for large-scale global optimisation," Journal of Heuristics, Springer, vol. 23(6), pages 449-469, December.
    18. Andrea Cassioli & Fabio Schoen, 2013. "Global optimization of expensive black box problems with a known lower bound," Journal of Global Optimization, Springer, vol. 57(1), pages 177-190, September.
    19. Qi Zhang & Jiaqiao Hu, 2019. "Simulation Optimization Using Multi-Time-Scale Adaptive Random Search," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(06), pages 1-34, December.
    20. Ferreiro, Ana M. & García-Rodríguez, José Antonio & Vázquez, Carlos & e Silva, E. Costa & Correia, A., 2019. "Parallel two-phase methods for global optimization on GPU," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 156(C), pages 67-90.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:67:y:2017:i:1:d:10.1007_s10898-015-0398-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.