IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v67y2017i1d10.1007_s10898-015-0398-9.html
   My bibliography  Save this article

Interactive model-based search with reactive resource allocation

Author

Listed:
  • Yue Sun

    (University of Florida Gainesville)

  • Alfredo Garcia

    (University of Florida Gainesville)

Abstract

We revisit the interactive model-based approach to global optimization proposed in Wang and Garcia (J Glob Optim 61(3):479–495, 2015) in which parallel threads independently execute a model-based search method and periodically interact through a simple acceptance-rejection rule aimed at preventing duplication of search efforts. In that paper it was assumed that each thread successfully identifies a locally optimal solution every time the acceptance-rejection rule is implemented. Under this stylized model of computational time, the rate of convergence to a globally optimal solution was shown to increase exponentially in the number of threads. In practice however, the computational time required to identify a locally optimal solution varies greatly. Therefore, when the acceptance-rejection rule is implemented, several threads may fail to identify a locally optimal solution. This situation calls for reallocation of computational resources in order to speed up the identification of local optima when one or more threads repeatedly fail to do so. In this paper we consider an implementation of the interactive model-based approach that accounts for real time, that is, it takes into account the possibility that several threads may fail to identify a locally optimal solution whenever the acceptance-rejection rule is implemented. We propose a modified acceptance-rejection rule that alternates between enforcing diverse search (in order to prevent duplication) and reallocation of computational effort (in order to speed up the identification of local optima). We show that the rate of convergence in real-time increases with the number of threads. This result formalizes the idea that in parallel computing, exploitation and exploration can be complementary provided relatively simple rules for interaction are implemented. We report the results from extensive numerical experiments which are illustrate the theoretical analysis of performance.

Suggested Citation

  • Yue Sun & Alfredo Garcia, 2017. "Interactive model-based search with reactive resource allocation," Journal of Global Optimization, Springer, vol. 67(1), pages 135-149, January.
  • Handle: RePEc:spr:jglopt:v:67:y:2017:i:1:d:10.1007_s10898-015-0398-9
    DOI: 10.1007/s10898-015-0398-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-015-0398-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-015-0398-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiaqiao Hu & Michael C. Fu & Steven I. Marcus, 2007. "A Model Reference Adaptive Search Method for Global Optimization," Operations Research, INFORMS, vol. 55(3), pages 549-568, June.
    2. R. Martí & J. Marcos Moreno-Vega & A. Duarte, 2010. "Advanced Multi-start Methods," International Series in Operations Research & Management Science, in: Michel Gendreau & Jean-Yves Potvin (ed.), Handbook of Metaheuristics, chapter 0, pages 265-281, Springer.
    3. A. Ferreiro & J. García & J. López-Salas & C. Vázquez, 2013. "An efficient implementation of parallel simulated annealing algorithm in GPUs," Journal of Global Optimization, Springer, vol. 57(3), pages 863-890, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alan Lee & Martin Savelsbergh, 2017. "An extended demand responsive connector," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 25-50, March.
    2. Jiaqiao Hu & Hyeong Chang & Michael Fu & Steven Marcus, 2011. "Dynamic sample budget allocation in model-based optimization," Journal of Global Optimization, Springer, vol. 50(4), pages 575-596, August.
    3. Achamrah, Fatima Ezzahra & Puchinger, Jakob, 2024. "A gradient-descent-based framework for solving a stochastic two-echelon delivery problem with cargo-bikes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
    4. Konstantin Barkalov & Victor Gergel, 2016. "Parallel global optimization on GPU," Journal of Global Optimization, Springer, vol. 66(1), pages 3-20, September.
    5. Xi Chen & Enlu Zhou, 2015. "Population model-based optimization," Journal of Global Optimization, Springer, vol. 63(1), pages 125-148, September.
    6. Ana M. Ferreiro & Enrico Ferri & José A. García & Carlos Vázquez, 2021. "Global Optimization for Automatic Model Points Selection in Life Insurance Portfolios," Mathematics, MDPI, vol. 9(5), pages 1-19, February.
    7. Jinlong Yuan & Lei Wang & Xu Zhang & Enmin Feng & Hongchao Yin & Zhilong Xiu, 2015. "Parameter identification for a nonlinear enzyme-catalytic dynamic system with time-delays," Journal of Global Optimization, Springer, vol. 62(4), pages 791-810, August.
    8. Liujia Hu & Sigrún Andradóttir, 2019. "An Asymptotically Optimal Set Approach for Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 21-39, February.
    9. Ferreiro-Ferreiro, Ana M. & García-Rodríguez, José A. & Souto, Luis & Vázquez, Carlos, 2019. "Basin Hopping with synched multi L-BFGS local searches. Parallel implementation in multi-CPU and GPUs," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 282-298.
    10. Zheng Peng & Donghua Wu & Wenxing Zhu, 2016. "The robust constant and its applications in random global search for unconstrained global optimization," Journal of Global Optimization, Springer, vol. 64(3), pages 469-482, March.
    11. Lan, Yingjie & Ball, Michael O. & Karaesmen, Itir Z. & Zhang, Jean X. & Liu, Gloria X., 2015. "Analysis of seat allocation and overbooking decisions with hybrid information," European Journal of Operational Research, Elsevier, vol. 240(2), pages 493-504.
    12. Trond Steihaug & Sara Suleiman, 2013. "Global convergence and the Powell singular function," Journal of Global Optimization, Springer, vol. 56(3), pages 845-853, July.
    13. Fan, Qi & Tan, Ken Seng & Zhang, Jinggong, 2023. "Empirical tail risk management with model-based annealing random search," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 106-124.
    14. Ana Maria Ferreiro-Ferreiro & José Antonio García-Rodríguez & Luis A. Souto & Carlos Vázquez, 2020. "Efficient Model Points Selection in Insurance by Parallel Global Optimization Using Multi CPU and Multi GPU," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 62(1), pages 5-20, February.
    15. Joshua Q. Hale & Enlu Zhou & Jiming Peng, 2017. "A Lagrangian search method for the P-median problem," Journal of Global Optimization, Springer, vol. 69(1), pages 137-156, September.
    16. Shi Pu & Alfredo Garcia, 2018. "A Flocking-Based Approach for Distributed Stochastic Optimization," Operations Research, INFORMS, vol. 66(1), pages 267-281, January.
    17. A. M. Ferreiro & J. A. Garc'ia & J. G. L'opez-Salas & C. V'azquez, 2024. "SABR/LIBOR market models: pricing and calibration for some interest rate derivatives," Papers 2408.01470, arXiv.org.
    18. Karapetyan, Daniel & Mitrovic Minic, Snezana & Malladi, Krishna T. & Punnen, Abraham P., 2015. "Satellite downlink scheduling problem: A case study," Omega, Elsevier, vol. 53(C), pages 115-123.
    19. Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.
    20. Enlu Zhou & Shalabh Bhatnagar, 2018. "Gradient-Based Adaptive Stochastic Search for Simulation Optimization Over Continuous Space," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 154-167, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:67:y:2017:i:1:d:10.1007_s10898-015-0398-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.