IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v65y2016i3d10.1007_s10898-015-0381-5.html
   My bibliography  Save this article

Linear and parabolic relaxations for quadratic constraints

Author

Listed:
  • Ferenc Domes

    (University of Vienna)

  • Arnold Neumaier

    (University of Vienna)

Abstract

This paper presents new techniques for filtering boxes in the presence of an additional quadratic constraint, a problem relevant for branch and bound methods for global optimization and constraint satisfaction. This is done by generating powerful linear and parabolic relaxations from a quadratic constraint and bound constraints, which are then subject to standard constraint propagation techniques. The techniques are often applicable even if the original box is unbounded in some but not all variables. As an auxiliary tool—needed to make our theoretical results implementable in floating-point arithmetic without sacrificing mathematical rigor—we extend the directed Cholesky factorization from Domes and Neumaier (SIAM J Matrix Anal Appl 32:262–285, 2011) to a partial directed Cholesky factorization with pivoting. If the quadratic constraint is convex and the initial bounds are sufficiently wide, the final relaxation and the enclosure are optimal up to rounding errors. Numerical tests show the usefulness of the new factorization methods in the context of filtering.

Suggested Citation

  • Ferenc Domes & Arnold Neumaier, 2016. "Linear and parabolic relaxations for quadratic constraints," Journal of Global Optimization, Springer, vol. 65(3), pages 457-486, July.
  • Handle: RePEc:spr:jglopt:v:65:y:2016:i:3:d:10.1007_s10898-015-0381-5
    DOI: 10.1007/s10898-015-0381-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10898-015-0381-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10898-015-0381-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:65:y:2016:i:3:d:10.1007_s10898-015-0381-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.