IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v62y2015i2p229-241.html
   My bibliography  Save this article

Some observations on exclusion regions in branch and bound algorithms

Author

Listed:
  • Ralph Kearfott

Abstract

In branch and bound algorithms for constrained global optimization, an acceleration technique is to construct regions $${\varvec{x}}^{*}$$ x ∗ around local optimizing points $$\check{x}$$ x ˇ , then delete these regions from further search. The result of the algorithm is then a list of those small regions in which all globally optimizing points must lie. If the constructed regions are too small, the algorithm will not be able to easily reject adjacent regions in the search, while, if the constructed regions are too large, the set of optimizing points is not known accurately. We briefly review previous methods of constructing boxes about approximate optimizing points. We then derive a formula for determining the size of a constructed solution-containing region, depending on a small radius $$\epsilon $$ ϵ , and of constructing a containing box $${\varvec{X}}^{*}\supset {\varvec{x}}^{*}$$ X ∗ ⊃ x ∗ such that all points in $${\varvec{X}}^{*}\setminus {\varvec{x}}^{*}$$ X ∗ \ x ∗ are proven to be infeasible, without the need to actually process them in the branch and bound algorithm. The construction differs in its motivation and concept from previous methods of constructing such boxes $${\varvec{X}}^{*}$$ X ∗ . It may be possible to use this technique to reduce the large amount of processing branch and bound algorithms typically require to fathom regions adjacent to optimizing points, and to obtain more accurate bounds on solution sets. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Ralph Kearfott, 2015. "Some observations on exclusion regions in branch and bound algorithms," Journal of Global Optimization, Springer, vol. 62(2), pages 229-241, June.
  • Handle: RePEc:spr:jglopt:v:62:y:2015:i:2:p:229-241
    DOI: 10.1007/s10898-014-0248-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-014-0248-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-014-0248-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ralph Kearfott, 2014. "On rigorous upper bounds to a global optimum," Journal of Global Optimization, Springer, vol. 59(2), pages 459-476, July.
    2. Ralph Kearfott & Sowmya Muniswamy & Yi Wang & Xinyu Li & Qian Wang, 2013. "On smooth reformulations and direct non-smooth computations for minimax problems," Journal of Global Optimization, Springer, vol. 57(4), pages 1091-1111, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergiy Butenko, 2016. "Journal of Global Optimization Best Paper Award for 2015," Journal of Global Optimization, Springer, vol. 66(4), pages 595-596, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hermann Schichl & Mihály Markót & Arnold Neumaier, 2014. "Exclusion regions for optimization problems," Journal of Global Optimization, Springer, vol. 59(2), pages 569-595, July.
    2. Peter Kirst & Oliver Stein & Paul Steuermann, 2015. "Deterministic upper bounds for spatial branch-and-bound methods in global minimization with nonconvex constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 591-616, July.
    3. Ignacio Araya & Victor Reyes, 2016. "Interval Branch-and-Bound algorithms for optimization and constraint satisfaction: a survey and prospects," Journal of Global Optimization, Springer, vol. 65(4), pages 837-866, August.
    4. Ralph Kearfott, 2014. "On rigorous upper bounds to a global optimum," Journal of Global Optimization, Springer, vol. 59(2), pages 459-476, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:62:y:2015:i:2:p:229-241. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.