IDEAS home Printed from https://ideas.repec.org/a/spr/jglopt/v54y2012i1p185-197.html
   My bibliography  Save this article

Viscosity approximation methods for a nonexpansive semigroup in Banach spaces with gauge functions

Author

Listed:
  • Prasit Cholamjiak
  • Suthep Suantai

Abstract

We first investigate strong convergence of the sequence generated by implicit and explicit viscosity approximation methods for a one-parameter nonexpansive semigroup in a real Banach space E which has a uniformly Gâteaux differentiable norm and admits the duality mapping j φ , where φ is a gauge function on [0, ∞). The main results also improve and extend some known results concerning the normalized duality mapping in the literature. Copyright Springer Science+Business Media, LLC. 2012

Suggested Citation

  • Prasit Cholamjiak & Suthep Suantai, 2012. "Viscosity approximation methods for a nonexpansive semigroup in Banach spaces with gauge functions," Journal of Global Optimization, Springer, vol. 54(1), pages 185-197, September.
  • Handle: RePEc:spr:jglopt:v:54:y:2012:i:1:p:185-197
    DOI: 10.1007/s10898-011-9756-4
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10898-011-9756-4
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10898-011-9756-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nattakarn Kaewyong & Kanokwan Sitthithakerngkiet, 2021. "Modified Tseng’s Method with Inertial Viscosity Type for Solving Inclusion Problems and Its Application to Image Restoration Problems," Mathematics, MDPI, vol. 9(10), pages 1-15, May.
    2. Kasamsuk Ungchittrakool & Somyot Plubtieng & Natthaphon Artsawang & Purit Thammasiri, 2023. "Modified Mann-Type Algorithm for Two Countable Families of Nonexpansive Mappings and Application to Monotone Inclusion and Image Restoration Problems," Mathematics, MDPI, vol. 11(13), pages 1-21, June.
    3. Suthep Suantai & Kunrada Kankam & Prasit Cholamjiak, 2020. "A Novel Forward-Backward Algorithm for Solving Convex Minimization Problem in Hilbert Spaces," Mathematics, MDPI, vol. 8(1), pages 1-13, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jglopt:v:54:y:2012:i:1:p:185-197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.