IDEAS home Printed from https://ideas.repec.org/a/spr/jcsosc/v8y2025i1d10.1007_s42001-024-00334-y.html
   My bibliography  Save this article

A structural equation modeling approach to leveraging the power of extant sentiment analysis tools

Author

Listed:
  • Viswadeep Lebakula

    (Oak Ridge National Laboratory)

  • Ben Porter

    (Mississippi State University)

  • Megan Stubbs-Richardson

    (Mississippi State University)

  • Taylor Ray

    (Mississippi State University)

  • Arthur Cosby

    (Mississippi State University)

  • Cindy Bethel

    (Mississippi State University)

Abstract

Machine-derived sentiment analysis has become a pervasive and useful tool to address a wide array of issues in natural language processing. Leading technology companies such as Google now provide sentiment analysis tools (SATs) as readily accessible online products. Academic researchers develop and make available SATs to support the research enterprise. One of the major challenges with SATs is the inconsistencies in results among the various SATs. Consequently, the selection of a SAT for a specific purpose may significantly impact the application. This study addresses the foregoing problem by utilizing structural equation modeling to merge the outputs of SATs to develop a combined sentiment metric without the need for a labeled training dataset. This method is applicable to a wide range of text-based problems, is data-driven, and replicable. It was tested using three publicly available datasets and compared against seven different SATs. The results indicate that as a continous measure, the proposed method outperformed other SATs in the movie reviews and SemEval datasets, and achieved a tie for first place with IBM Watson on the Sentiment 140 dataset. Also, compared to the published major alternatives, the arithmetic mean solution, this approach performed better across these three datasets.

Suggested Citation

  • Viswadeep Lebakula & Ben Porter & Megan Stubbs-Richardson & Taylor Ray & Arthur Cosby & Cindy Bethel, 2025. "A structural equation modeling approach to leveraging the power of extant sentiment analysis tools," Journal of Computational Social Science, Springer, vol. 8(1), pages 1-21, February.
  • Handle: RePEc:spr:jcsosc:v:8:y:2025:i:1:d:10.1007_s42001-024-00334-y
    DOI: 10.1007/s42001-024-00334-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42001-024-00334-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42001-024-00334-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin Haselmayer & Marcelo Jenny, 2017. "Sentiment analysis of political communication: combining a dictionary approach with crowdcoding," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(6), pages 2623-2646, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hiroki Takikawa & Takuto Sakamoto, 2020. "The moral–emotional foundations of political discourse: a comparative analysis of the speech records of the U.S. and the Japanese legislatures," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(2), pages 547-566, April.
    2. Rauh, Christian, 2018. "Validating a sentiment dictionary for German political language—a workbench note," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 15(4), pages 319-343.
    3. Juha Koljonen & Emily Öhman & Pertti Ahonen & Mikko Mattila, 2022. "Strategic sentiments and emotions in post-Second World War party manifestos in Finland," Journal of Computational Social Science, Springer, vol. 5(2), pages 1529-1554, November.
    4. Eyal Eckhaus & Zachary Sheaffer, 2018. "Managerial hubris detection: the case of Enron," Risk Management, Palgrave Macmillan, vol. 20(4), pages 304-325, November.
    5. Wolfinger, Julia & Köhler, Ekkehard A. & Feld, Lars P. & Thomas, Tobias, 2018. "57 Channels (And Nothin On): Does TV-News on the Eurozone affect Government Bond Yield Spreads?," VfS Annual Conference 2018 (Freiburg, Breisgau): Digital Economy 181610, Verein für Socialpolitik / German Economic Association.
    6. Katja Pietrzyck & Nora Berke & Vanessa Wendel & Julia Steinhoff-Wagner & Sebastian Jarzębowski & Brigitte Petersen, 2021. "Understanding the Importance of International Quality Standards Regarding Global Trade in Food and Agricultural Products: Analysis of the German Media," Agriculture, MDPI, vol. 11(4), pages 1-20, April.
    7. Robert Hogenraad, 2019. "Fear in the West: a sentiment analysis using a computer-readable “Fear Index”," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(3), pages 1239-1261, May.
    8. Hugo Oriola & Matthieu Picault, 2023. "Opportunistic Political Central Bank Coverage: Does media coverage of ECB's Monetary Policy Impacts German Political Parties' Popularity?," Working Papers hal-04273091, HAL.
    9. Elif Günalan & Saadet Turhan & Betül Yıldırım Çavak & İrem Kaya Cebioğlu & Özge Çonak, 2022. "The Evaluation of Videos about Branched-Chain Amino Acids Supplements on YouTube ™ : A Multi-Approach Study," IJERPH, MDPI, vol. 19(24), pages 1-15, December.
    10. Dimitrios Kydros & Maria Argyropoulou & Vasiliki Vrana, 2021. "A Content and Sentiment Analysis of Greek Tweets during the Pandemic," Sustainability, MDPI, vol. 13(11), pages 1-21, May.
    11. Shrub, Yuliya & Rieger, Jonas & Müller, Henrik & Jentsch, Carsten, 2022. "Text data rule - don't they? A study on the (additional) information of Handelsblatt data for nowcasting German GDP in comparison to established economic indicators," Ruhr Economic Papers 964, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    12. Shesen Guo & Ganzhou Zhang, 2020. "Using Machine Learning for Analyzing Sentiment Orientations Toward Eight Countries," SAGE Open, , vol. 10(3), pages 21582440209, August.
    13. Hirsch, Patrick & Feld, Lars P. & Köhler, Ekkehard A. & Thomas, Tobias, 2024. "“Whatever It Takes!” How tonality of TV-news affected government bond yield spreads during the European debt crisis," European Journal of Political Economy, Elsevier, vol. 82(C).
    14. Katarina Böttcher & Kerstin Lopatta, 2020. "Gender-Sensitive Language in German Annual Reports," Journal of Management and Sustainability, Canadian Center of Science and Education, vol. 8(4), pages 1-1, March.
    15. Ralf Dewenter & Uwe Dulleck & Tobias Thomas, 2020. "Does the 4th estate deliver? The Political Coverage Index and its application to media capture," Constitutional Political Economy, Springer, vol. 31(3), pages 292-328, September.
    16. Hirsch, Patrick & Köhler, Ekkehard A. & Feld, Lars P. & Thomas, Tobias, 2020. ""Whatever it takes!": How tonality of TV-news affects government bond yield spreads during crises," Freiburg Discussion Papers on Constitutional Economics 20/9, Walter Eucken Institut e.V..
    17. Miklós Sebők & Orsolya Ring & Márk György Kis & Martin Balázs Bánóczy & Ágnes Dinnyés, 2024. "The geopolitics of vaccine media representation in Orbán’s Hungary—an AI-supported sentiment analysis," Journal of Computational Social Science, Springer, vol. 7(3), pages 2897-2920, December.
    18. Robert Hogenraad, 2021. "The way of visionaries: foresight and imagination, computed," Quality & Quantity: International Journal of Methodology, Springer, vol. 55(5), pages 1631-1660, October.
    19. Zobel, Malisa & Lehmann, Pola, 2018. "Positions and saliency of immigration in party manifestos: A novel dataset using crowd coding," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 57(4), pages 1056-1083.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcsosc:v:8:y:2025:i:1:d:10.1007_s42001-024-00334-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.