IDEAS home Printed from https://ideas.repec.org/a/spr/jcsosc/v7y2024i2d10.1007_s42001-024-00289-0.html
   My bibliography  Save this article

Propositional claim detection: a task and dataset for the classification of claims to truth

Author

Listed:
  • Sami Nenno

    (University of Bremen
    Humboldt Institute for Internet and Society)

Abstract

This paper introduces Propositional Claim Detection (PCD), an NLP task for classifying claims to truth, and presents a publicly available dataset for it. PCD is applicable in practical scenarios, for instance, for the support of fact-checkers, as well as in many areas of communication research. By leveraging insights from philosophy and linguistics, PCD is a more systematic and transparent version of claim detection than previous approaches. This paper presents the theoretical background for PCD and discusses its advantages over alternative approaches to claim detection. Extensive experiments on models trained on the dataset are conducted and result in an $$\hbox {F}_{1}$$ F 1 -score of up to 0.91. Moreover, PCD’s generalization across domains is tested. Models trained on the dataset show stable performance for text from previously unseen domains such as different topical domains or writing styles. PCD is a basic task that finds application in various fields and can be integrated with many other computational tools.

Suggested Citation

  • Sami Nenno, 2024. "Propositional claim detection: a task and dataset for the classification of claims to truth," Journal of Computational Social Science, Springer, vol. 7(2), pages 1727-1752, October.
  • Handle: RePEc:spr:jcsosc:v:7:y:2024:i:2:d:10.1007_s42001-024-00289-0
    DOI: 10.1007/s42001-024-00289-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42001-024-00289-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42001-024-00289-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Edson C. Tandoc Jr. & Ryan J. Thomas & Lauren Bishop, 2021. "What Is (Fake) News? Analyzing News Values (and More) in Fake Stories," Media and Communication, Cogitatio Press, vol. 9(1), pages 110-119.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Oscar Westlund, 2021. "Advancing Research into Dark Participation," Media and Communication, Cogitatio Press, vol. 9(1), pages 209-214.
    2. Jari Jussila & Anu Helena Suominen & Atte Partanen & Tapani Honkanen, 2021. "Text Analysis Methods for Misinformation–Related Research on Finnish Language Twitter," Future Internet, MDPI, vol. 13(6), pages 1-16, June.
    3. Lina Zhou & Jie Tao & Dongsong Zhang, 2023. "Does Fake News in Different Languages Tell the Same Story? An Analysis of Multi-level Thematic and Emotional Characteristics of News about COVID-19," Information Systems Frontiers, Springer, vol. 25(2), pages 493-512, April.
    4. Raúl Rodríguez-Ferrándiz & Cande Sánchez-Olmos & Tatiana Hidalgo-Marí & Estela Saquete-Boro, 2021. "Memetics of Deception: Spreading Local Meme Hoaxes during COVID-19 1st Year," Future Internet, MDPI, vol. 13(6), pages 1-19, June.
    5. Phimphakan Thongthip & Kannikar Intawong & Suepphong Chernbumroong & Perasuk Worragin & Yootthapong Tongpaeng & Kitti Puritat, 2024. "Design and analysis of personalized serious games for information literacy: catering to introverted and extraverted individuals through game elements," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcsosc:v:7:y:2024:i:2:d:10.1007_s42001-024-00289-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.