IDEAS home Printed from https://ideas.repec.org/a/spr/jcsosc/v6y2023i1d10.1007_s42001-022-00186-4.html
   My bibliography  Save this article

Estimating time-series changes in social sentiment @Twitter in U.S. metropolises during the COVID-19 pandemic

Author

Listed:
  • Ryuichi Saito

    (Keio University)

  • Shinichiro Haruyama

    (Keio University)

Abstract

Since early 2020, the global coronavirus pandemic has strained economic activities and traditional lifestyles. For such emergencies, our paper proposes a social sentiment estimation model that changes in response to infection conditions and state government orders. By designing mediation keywords that do not directly evoke coronavirus, it is possible to observe sentiment waveforms that vary as confirmed cases increase or decrease and as behavioral restrictions are ordered or lifted over a long period. The model demonstrates guaranteed performance with transformer-based neural network models and has been validated in New York City, Los Angeles, and Chicago, given that coronavirus infections explode in overcrowded cities. The time-series of the extracted social sentiment reflected the infection conditions of each city during the 2-year period from pre-pandemic to the new normal and shows a concurrency of waveforms common to the three cities. The methods of this paper could be applied not only to analysis of the COVID-19 pandemic but also to analyses of a wide range of emergencies and they could be a policy support tool that complements traditional surveys in the future.

Suggested Citation

  • Ryuichi Saito & Shinichiro Haruyama, 2023. "Estimating time-series changes in social sentiment @Twitter in U.S. metropolises during the COVID-19 pandemic," Journal of Computational Social Science, Springer, vol. 6(1), pages 359-388, April.
  • Handle: RePEc:spr:jcsosc:v:6:y:2023:i:1:d:10.1007_s42001-022-00186-4
    DOI: 10.1007/s42001-022-00186-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s42001-022-00186-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s42001-022-00186-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Amartya Chakraborty & Sunanda Bose, 2020. "Around the world in 60 days: an exploratory study of impact of COVID-19 on online global news sentiment," Journal of Computational Social Science, Springer, vol. 3(2), pages 367-400, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emilio Ferrara & Stefano Cresci & Luca Luceri, 2020. "Misinformation, manipulation, and abuse on social media in the era of COVID-19," Journal of Computational Social Science, Springer, vol. 3(2), pages 271-277, November.
    2. Waseem Ahmad & Bang Wang & Philecia Martin & Minghua Xu & Han Xu, 2023. "Enhanced sentiment analysis regarding COVID-19 news from global channels," Journal of Computational Social Science, Springer, vol. 6(1), pages 19-57, April.
    3. Dylong, Patrick & Koenings, Fabian, 2023. "Framing of economic news and policy support during a pandemic: Evidence from a survey experiment," European Journal of Political Economy, Elsevier, vol. 76(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcsosc:v:6:y:2023:i:1:d:10.1007_s42001-022-00186-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.