IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v49y2025i3d10.1007_s10878-025-01274-7.html
   My bibliography  Save this article

Inefficiency of multiplicative approximate Nash equilibrium for scheduling games

Author

Listed:
  • Zhuyinan Wang

    (Zhejiang University)

  • Chen Zhang

    (Zhejiang University)

  • Zhiyi Tan

    (Zhejiang University)

Abstract

This paper studies the inefficiency of multiplicative approximate Nash Equilibrium for scheduling games. There is a set of machines and a set of jobs. Each job could choose one machine and be processed by the chosen one. A schedule is a $$\theta $$ θ -NE if no player has the incentive to deviate so that it decreases its cost by a factor larger than $$1+\theta $$ 1 + θ . The $$\theta $$ θ -NE is a generation of Nash Equilibrium and its inefficiency can be measured by the $$\theta $$ θ -PoA, which is also a generalization of the Price of Anarchy. For the game with the social cost of minimizing the makespan, the exact $$\theta $$ θ -PoA for any number of machines and any $$\theta \ge 0$$ θ ≥ 0 is obtained. For the game with the social cost of maximizing the minimum machine load, we present upper and lower bounds on the $$\theta $$ θ -PoA. Tight bounds are provided for cases where the number of machines is between 2 and 7 and for any $$\theta \ge 0$$ θ ≥ 0 .

Suggested Citation

  • Zhuyinan Wang & Chen Zhang & Zhiyi Tan, 2025. "Inefficiency of multiplicative approximate Nash equilibrium for scheduling games," Journal of Combinatorial Optimization, Springer, vol. 49(3), pages 1-21, April.
  • Handle: RePEc:spr:jcomop:v:49:y:2025:i:3:d:10.1007_s10878-025-01274-7
    DOI: 10.1007/s10878-025-01274-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-025-01274-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-025-01274-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:49:y:2025:i:3:d:10.1007_s10878-025-01274-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.