IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v48y2024i5d10.1007_s10878-024-01227-6.html
   My bibliography  Save this article

Dynamic time window based full-view coverage maximization in CSNs

Author

Listed:
  • Jingfang Su

    (Harbin Institute of Technology (Shenzhen))

  • Zeqing Li

    (Harbin Institute of Technology (Shenzhen))

  • Hongwei Du

    (Harbin Institute of Technology (Shenzhen))

  • Shengxin Liu

    (Harbin Institute of Technology (Shenzhen))

Abstract

In order to maximize full-view coverage of moving targets in Camera Sensor Networks (CSNs), a novel method known as “group set cover” is presented in this research. Choosing the best camera angles and placements to accomplish full-view coverage of the moving targets is one of the main focuses of the research in CSNs. Discretize the target into multiple views of [0, 2 $$\pi $$ π ], use a set of views of targets to represent the sensing direction of the camera sensor, and use a group set of views of targets to represent the position of the camera sensor. The total number of targets in a dynamic time window that is visible in full view is calculated. A mixed integer linear programming formulation is employed, which is then approximated using a random rounding method. This approximation approach offers a global estimation of local optimality, particularly for non-submodular optimization problems. Two methods for maximizing overall full-view coverage within a dynamic time window are proposed TSC-FTC-DTW and FTC-TW-DTW. Finally, the proposed methods are verified through experiments.

Suggested Citation

  • Jingfang Su & Zeqing Li & Hongwei Du & Shengxin Liu, 2024. "Dynamic time window based full-view coverage maximization in CSNs," Journal of Combinatorial Optimization, Springer, vol. 48(5), pages 1-18, December.
  • Handle: RePEc:spr:jcomop:v:48:y:2024:i:5:d:10.1007_s10878-024-01227-6
    DOI: 10.1007/s10878-024-01227-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-024-01227-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-024-01227-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weili Wu & Zhao Zhang & Wonjun Lee & Ding-Zhu Du, 2020. "Optimal Coverage in Wireless Sensor Networks," Springer Optimization and Its Applications, Springer, number 978-3-030-52824-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yingli Ran & Xiaohui Huang & Zhao Zhang & Ding-Zhu Du, 2021. "Approximation algorithm for minimum power partial multi-coverage in wireless sensor networks," Journal of Global Optimization, Springer, vol. 80(3), pages 661-677, July.
    2. Amir Masoud Rahmani & Saqib Ali & Mohammad Sadegh Yousefpoor & Efat Yousefpoor & Rizwan Ali Naqvi & Kamran Siddique & Mehdi Hosseinzadeh, 2021. "An Area Coverage Scheme Based on Fuzzy Logic and Shuffled Frog-Leaping Algorithm (SFLA) in Heterogeneous Wireless Sensor Networks," Mathematics, MDPI, vol. 9(18), pages 1-41, September.
    3. Yaoyao Zhang & Zhao Zhang & Ding-Zhu Du, 2023. "Construction of minimum edge-fault tolerant connected dominating set in a general graph," Journal of Combinatorial Optimization, Springer, vol. 45(2), pages 1-12, March.
    4. Zhao Zhang & Wei Liang & Hongmin W. Du & Siwen Liu, 2022. "Constant Approximation for the Lifetime Scheduling Problem of p -Percent Coverage," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2675-2685, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:48:y:2024:i:5:d:10.1007_s10878-024-01227-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.