IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v47y2024i2d10.1007_s10878-023-01102-w.html
   My bibliography  Save this article

Improved shuffled Frog leaping algorithm with unsupervised population partitioning strategies for complex optimization problems

Author

Listed:
  • Shikha Mehta

    (Jaypee Institute of Information Technology)

Abstract

Shuffled Frog leaping algorithm (SFLA) is a multi population swarm intelligence algorithm which employs population partitioning techniques during the evolutionary stage. Methods adopted by SFLA for partitioning the population into memeplexes play a critical role in determining its ability to solve complex optimization problems. However, limited research is done in this direction. This work presents supervised machine learning based methods Spectral Partitioning (SCP), Agglomerative Partitioning (AGP) and Ward Hierarchical Partitioning (WHP) for distributing the solutions into memeplexes. The efficacy of variants of SFLA with these methods is assessed over CEC2015 Bound Constrained Single-Objective Computationally Expensive Numerical Optimisation problems. Analysis of results establishes that proposed SCP, AGP and WHP methods outperform Shuffled complex evolution (SCE) partitioning technique; Seed and distance based partitioning technique (SEED), Random partitioning (RAND) and Dynamic sub-swarm partitioning (DNS) for more than 10 functions. Time complexity of all the algorithms is comparable with each other. Statistical analysis using Wilcoxon signed rank sum test indicates that SCP, AGP and WHP perform significantly better than existing approaches for small dimensions.

Suggested Citation

  • Shikha Mehta, 2024. "Improved shuffled Frog leaping algorithm with unsupervised population partitioning strategies for complex optimization problems," Journal of Combinatorial Optimization, Springer, vol. 47(2), pages 1-38, March.
  • Handle: RePEc:spr:jcomop:v:47:y:2024:i:2:d:10.1007_s10878-023-01102-w
    DOI: 10.1007/s10878-023-01102-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-023-01102-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-023-01102-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:47:y:2024:i:2:d:10.1007_s10878-023-01102-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.