IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v45y2023i2d10.1007_s10878-023-00992-0.html
   My bibliography  Save this article

Sharp spectral bounds for the vertex-connectivity of regular graphs

Author

Listed:
  • Wenqian Zhang

    (Shandong University of Technology)

  • Jianfeng Wang

    (Shandong University of Technology)

Abstract

Let G be a connected d-regular graph and $$\lambda _2(G)$$ λ 2 ( G ) be the second largest eigenvalue of its adjacency matrix. Mohar and O (private communication) asked a challenging problem: what is the best upper bound for $$\lambda _2(G)$$ λ 2 ( G ) which guarantees that $$\kappa (G) \ge t+1$$ κ ( G ) ≥ t + 1 , where $$1 \le t \le d-1$$ 1 ≤ t ≤ d - 1 and $$\kappa (G)$$ κ ( G ) is the vertex-connectivity of G, which was also mentioned by Cioabă. As a starting point, we determine a sharp bound for $$\lambda _2(G)$$ λ 2 ( G ) to guarantee $$\kappa (G) \ge 2$$ κ ( G ) ≥ 2 (i.e., the case that $$t =1$$ t = 1 in this problem), and characterize all families of extremal graphs.

Suggested Citation

  • Wenqian Zhang & Jianfeng Wang, 2023. "Sharp spectral bounds for the vertex-connectivity of regular graphs," Journal of Combinatorial Optimization, Springer, vol. 45(2), pages 1-12, March.
  • Handle: RePEc:spr:jcomop:v:45:y:2023:i:2:d:10.1007_s10878-023-00992-0
    DOI: 10.1007/s10878-023-00992-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-023-00992-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-023-00992-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Ruifang & Lai, Hong-Jian & Tian, Yingzhi & Wu, Yang, 2019. "Vertex-connectivity and eigenvalues of graphs with fixed girth," Applied Mathematics and Computation, Elsevier, vol. 344, pages 141-149.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:45:y:2023:i:2:d:10.1007_s10878-023-00992-0. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.