IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v45y2023i1d10.1007_s10878-022-00951-1.html
   My bibliography  Save this article

Streaming submodular maximization under d-knapsack constraints

Author

Listed:
  • Zihan Chen

    (Ocean University of China)

  • Bin Liu

    (Ocean University of China)

  • Hongmin W. Du

    (Rutgers University)

Abstract

Submodular optimization is a key topic in combinatorial optimization, which has attracted extensive attention in the past few years. Among the known results, most of the submodular functions are defined on set. But recently some progress has been made on the integer lattice. In this paper, we study two problem of maximizing submodular functions with d-knapsack constraints. First, for the problem of maximizing DR-submodular functions with d-knapsack constraints on the integer lattice, we propose a one pass streaming algorithm that achieves a $$\frac{1-\theta }{1+d}$$ 1 - θ 1 + d -approximation with $$O\left( \frac{\log (d\beta ^{-1})}{\beta \epsilon }\right) $$ O log ( d β - 1 ) β ϵ memory complexity and $$O\left( \frac{\log (d\beta ^{-1})}{\epsilon }\log \Vert {\textbf {b}} \Vert _{\infty }\right) $$ O log ( d β - 1 ) ϵ log ‖ b ‖ ∞ update time per element, where $$\theta =\min (\alpha +\epsilon , 0.5+\epsilon )$$ θ = min ( α + ϵ , 0.5 + ϵ ) and $$\alpha , \beta $$ α , β are the upper and lower bounds for the cost of each item in the stream. Then we devise an improved streaming algorithm to reduce the memory complexity to $$O(\frac{d}{\beta \epsilon })$$ O ( d β ϵ ) with unchanged approximation ratio and query complexity. Then for the problem of maximizing submodular functions with d-knapsack constraints under noise, we design a one pass streaming algorithm. When $$\varepsilon \rightarrow 0$$ ε → 0 , it achieves a $$\frac{1}{1-\alpha +d}$$ 1 1 - α + d -approximate ratio, memory complexity $$O\left( \frac{\log (d\beta ^{-1})}{\beta \epsilon }\right) $$ O log ( d β - 1 ) β ϵ and query complexity $$O\left( \frac{\log (d\beta ^{-1})}{\epsilon }\right) $$ O log ( d β - 1 ) ϵ per element. As far as we know, these two are the first streaming algorithms under their corresponding problems.

Suggested Citation

  • Zihan Chen & Bin Liu & Hongmin W. Du, 2023. "Streaming submodular maximization under d-knapsack constraints," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-21, January.
  • Handle: RePEc:spr:jcomop:v:45:y:2023:i:1:d:10.1007_s10878-022-00951-1
    DOI: 10.1007/s10878-022-00951-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-022-00951-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-022-00951-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. G. L. Nemhauser & L. A. Wolsey, 1978. "Best Algorithms for Approximating the Maximum of a Submodular Set Function," Mathematics of Operations Research, INFORMS, vol. 3(3), pages 177-188, August.
    2. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions," LIDAM Reprints CORE 341, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Fisher, M.L. & Nemhauser, G.L. & Wolsey, L.A., 1978. "An analysis of approximations for maximizing submodular set functions - 1," LIDAM Reprints CORE 334, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bin Liu & Miaomiao Hu, 2022. "Fast algorithms for maximizing monotone nonsubmodular functions," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1655-1670, July.
    2. Zhenning Zhang & Donglei Du & Yanjun Jiang & Chenchen Wu, 2021. "Maximizing DR-submodular+supermodular functions on the integer lattice subject to a cardinality constraint," Journal of Global Optimization, Springer, vol. 80(3), pages 595-616, July.
    3. Awi Federgruen & Nan Yang, 2008. "Selecting a Portfolio of Suppliers Under Demand and Supply Risks," Operations Research, INFORMS, vol. 56(4), pages 916-936, August.
    4. Simon Bruggmann & Rico Zenklusen, 2019. "Submodular Maximization Through the Lens of Linear Programming," Management Science, INFORMS, vol. 44(4), pages 1221-1244, November.
    5. Jon Lee & Maxim Sviridenko & Jan Vondrák, 2010. "Submodular Maximization over Multiple Matroids via Generalized Exchange Properties," Mathematics of Operations Research, INFORMS, vol. 35(4), pages 795-806, November.
    6. Cheng Lu & Wenguo Yang & Ruiqi Yang & Suixiang Gao, 2022. "Maximizing a non-decreasing non-submodular function subject to various types of constraints," Journal of Global Optimization, Springer, vol. 83(4), pages 727-751, August.
    7. Maxim Sviridenko & Jan Vondrák & Justin Ward, 2017. "Optimal Approximation for Submodular and Supermodular Optimization with Bounded Curvature," Mathematics of Operations Research, INFORMS, vol. 42(4), pages 1197-1218, November.
    8. Niv Buchbinder & Moran Feldman & Roy Schwartz, 2017. "Comparing Apples and Oranges: Query Trade-off in Submodular Maximization," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 308-329, May.
    9. Suning Gong & Qingqin Nong & Shuyu Bao & Qizhi Fang & Ding-Zhu Du, 2023. "A fast and deterministic algorithm for Knapsack-constrained monotone DR-submodular maximization over an integer lattice," Journal of Global Optimization, Springer, vol. 85(1), pages 15-38, January.
    10. Xin Sun & Gaidi Li & Yapu Zhang & Zhenning Zhang, 2022. "Private non-monotone submodular maximization," Journal of Combinatorial Optimization, Springer, vol. 44(5), pages 3212-3232, December.
    11. Kung, Ling-Chieh & Liao, Wei-Hung, 2018. "An approximation algorithm for a competitive facility location problem with network effects," European Journal of Operational Research, Elsevier, vol. 267(1), pages 176-186.
    12. Niv Buchbinder & Moran Feldman, 2019. "Constrained Submodular Maximization via a Nonsymmetric Technique," Mathematics of Operations Research, INFORMS, vol. 44(3), pages 988-1005, August.
    13. Arash Asadpour & Hamid Nazerzadeh, 2016. "Maximizing Stochastic Monotone Submodular Functions," Management Science, INFORMS, vol. 62(8), pages 2374-2391, August.
    14. Min Cui & Dachuan Xu & Longkun Guo & Dan Wu, 2022. "Approximation guarantees for parallelized maximization of monotone non-submodular function with a cardinality constraint," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1671-1690, July.
    15. Manuel A. Nunez & Robert S. Garfinkel & Ram D. Gopal, 2007. "Stochastic Protection of Confidential Information in Databases: A Hybrid of Data Perturbation and Query Restriction," Operations Research, INFORMS, vol. 55(5), pages 890-908, October.
    16. Marek Adamczyk & Maxim Sviridenko & Justin Ward, 2016. "Submodular Stochastic Probing on Matroids," Mathematics of Operations Research, INFORMS, vol. 41(3), pages 1022-1038, August.
    17. Zengfu Wang & Bill Moran & Xuezhi Wang & Quan Pan, 2015. "An accelerated continuous greedy algorithm for maximizing strong submodular functions," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 1107-1124, November.
    18. Bin Liu & Zihan Chen & Huijuan Wang & Weili Wu, 2023. "An optimal streaming algorithm for non-submodular functions maximization on the integer lattice," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-17, January.
    19. Saeed Alaei & Ali Makhdoumi & Azarakhsh Malekian, 2021. "Maximizing Sequence-Submodular Functions and Its Application to Online Advertising," Management Science, INFORMS, vol. 67(10), pages 6030-6054, October.
    20. Zengfu Wang & Bill Moran & Xuezhi Wang & Quan Pan, 2016. "Approximation for maximizing monotone non-decreasing set functions with a greedy method," Journal of Combinatorial Optimization, Springer, vol. 31(1), pages 29-43, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:45:y:2023:i:1:d:10.1007_s10878-022-00951-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.