IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v44y2022i5d10.1007_s10878-022-00911-9.html
   My bibliography  Save this article

Performance prediction and optimization for healthcare enterprises in the context of the COVID-19 pandemic: an intelligent DEA-SVM model

Author

Listed:
  • He Huang

    (University of Shanghai for Science and Technology)

  • Liwei Zhong

    (Shanghai University of Traditional Chinese Medicine)

  • Ting Shen

    (Shanghai University of Traditional Chinese Medicine)

  • Huixin Wang

    (Shanghai University of Traditional Chinese Medicine)

Abstract

The coronavirus disease (COVID-19) pandemic has caused significant changes in the external environment of enterprises, resulting in tremendous negative impacts. Accordingly, the irregular fluctuation of business data poses a critical challenge to traditional approaches. Therefore, to combat the effects of the COVID-19 pandemic, an effective model is required to proactively predict an enterprise’s performance and simultaneously generate scientific performance optimization solutions. Consequently, at the intersection of artificial intelligence algorithms, operations research, and management science, an intelligent DEA-SVM model, which has a theoretical contribution, is developed in this study. The capabilities of this model are verified through sufficient numerical experiments. On the one hand, this model outperforms traditional algorithms in prediction accuracy. On the other hand, effective performance optimization solutions for low-performance enterprises are obtained from the input–output perspective. Moreover, the application value of this model is reflected in its successful implementation in the healthcare industry. Thus, it is a user-friendly tool for realizing the stable operation of enterprises in the context of the COVID-19 pandemic.

Suggested Citation

  • He Huang & Liwei Zhong & Ting Shen & Huixin Wang, 2022. "Performance prediction and optimization for healthcare enterprises in the context of the COVID-19 pandemic: an intelligent DEA-SVM model," Journal of Combinatorial Optimization, Springer, vol. 44(5), pages 3778-3791, December.
  • Handle: RePEc:spr:jcomop:v:44:y:2022:i:5:d:10.1007_s10878-022-00911-9
    DOI: 10.1007/s10878-022-00911-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-022-00911-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-022-00911-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Efpraxia D. Zamani & Anastasia Griva & Kieran Conboy, 2022. "Using Business Analytics for SME Business Model Transformation under Pandemic Time Pressure," Information Systems Frontiers, Springer, vol. 24(4), pages 1145-1166, August.
    2. Lahmiri, Salim & Bekiros, Stelios, 2021. "The effect of COVID-19 on long memory in returns and volatility of cryptocurrency and stock markets," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    3. Wei Gu & Thomas L. Saaty & Lirong Wei, 2018. "Evaluating and Optimizing Technological Innovation Efficiency of Industrial Enterprises Based on Both Data and Judgments," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(01), pages 9-43, January.
    4. Shanling Li & Jennifer Shang & Sandra A. Slaughter, 2010. "Why Do Software Firms Fail? Capabilities, Competitive Actions, and Firm Survival in the Software Industry from 1995 to 2007," Information Systems Research, INFORMS, vol. 21(3), pages 631-654, September.
    5. Mehdi Soltanifar & Hamid Sharafi, 2022. "A modified DEA cross efficiency method with negative data and its application in supplier selection," Journal of Combinatorial Optimization, Springer, vol. 43(1), pages 265-296, January.
    6. Yi Du & Hua Yu & Zhijun Li, 2021. "Research of SVM ensembles in medical examination scheduling," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 1042-1052, November.
    7. Dawen Yan & Guotai Chi & Kin Keung Lai, 2020. "Financial Distress Prediction and Feature Selection in Multiple Periods by Lassoing Unconstrained Distributed Lag Non-linear Models," Mathematics, MDPI, vol. 8(8), pages 1-27, August.
    8. Jung-Kai Tsai & Chih-Hsing Hung, 2021. "Improving AdaBoost Classifier to Predict Enterprise Performance after COVID-19," Mathematics, MDPI, vol. 9(18), pages 1-10, September.
    9. Pengyue Wu & Jing Ma & Xiaoyu Guo, 2022. "Efficiency evaluation and influencing factors analysis of fiscal and taxation policies: A method combining DEA-AHP and CD function," Annals of Operations Research, Springer, vol. 309(1), pages 325-345, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael K. Fung, 2019. "Fraudulent Financial Reporting and Technological Capability in the Information Technology Sector: A Resource-Based Perspective," Journal of Business Ethics, Springer, vol. 156(2), pages 577-589, May.
    2. Garcia Martinez, Marian & Zouaghi, Ferdaous & Garcia Marco, Teresa & Robinson, Catherine, 2019. "What drives business failure? Exploring the role of internal and external knowledge capabilities during the global financial crisis," Journal of Business Research, Elsevier, vol. 98(C), pages 441-449.
    3. Krishnadas Nanath & R Radhakrishna Pillai, 2021. "Towards a framework for sustaining Green IT initiatives: an empirical investigation," Information Technology and Management, Springer, vol. 22(3), pages 193-206, September.
    4. Skrynkovskyy, Ruslan & Pavlenchyk, Nataliia & Tsyuh, Svyatoslav & Zanevskyy, Ihor & Pavlenchyk, Anatoliі, 2022. "Economic-mathematical model of enterprise profit maximization in the system of sustainable development values," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 8(4), December.
    5. Karen Ruckman & Nilesh Saraf & Vallabh Sambamurthy, 2015. "Market Positioning by IT Service Vendors Through Imitation," Information Systems Research, INFORMS, vol. 26(1), pages 100-126, March.
    6. Carles Méndez-Ortega & Mercedes Teruel, 2020. "To acquire or not to acquire: the effects of acquisitions in the software industry," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 793-814, July.
    7. Nisreen Ameen & Jyoti Choudrie & Paul Jones & Amitabh Anand, 2022. "Innovative Technologies and Small-Medium Sized Enterprises in Times of Crisis," Information Systems Frontiers, Springer, vol. 24(4), pages 1055-1060, August.
    8. Katerina Fotova Čiković & Ivana Martinčević & Joško Lozić, 2022. "Application of Data Envelopment Analysis (DEA) in the Selection of Sustainable Suppliers: A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 14(11), pages 1-30, May.
    9. Markovitch, Dmitri G. & Huang, Dongling & Ye, Pengfei, 2020. "Marketing intensity and firm performance: Contrasting the insights based on actual marketing expenditure and its SG&A proxy," Journal of Business Research, Elsevier, vol. 118(C), pages 223-239.
    10. Yaliu Yang & Yuan Wang & Cui Wang & Yingyan Zhang & Cuixia Zhang, 2022. "Temporal and Spatial Evolution of the Science and Technology Innovative Efficiency of Regional Industrial Enterprises: A Data-Driven Perspective," Sustainability, MDPI, vol. 14(17), pages 1-21, August.
    11. Ravi Bapna & Alok Gupta & Gautam Ray & Shweta Singh, 2023. "Single-Sourcing vs. Multisourcing: An Empirical Analysis of Large Information Technology Outsourcing Arrangements," Information Systems Research, INFORMS, vol. 34(3), pages 1109-1130, September.
    12. Butt, Moeen Naseer & Baig, Ahmed S., 2024. "Assessing the firm-level financial consequences of clustering," Journal of Business Research, Elsevier, vol. 178(C).
    13. Irfan Kanat & Yili Hong & T. S. Raghu, 2018. "Surviving in Global Online Labor Markets for IT Services: A Geo-Economic Analysis," Information Systems Research, INFORMS, vol. 29(4), pages 893-909, December.
    14. Parisa Rafigh & Ali Akbar Akbari & Hadi Mohammadi Bidhandi & Ali Husseinzadeh Kashan, 2022. "A sustainable supply chain network considering lot sizing with quantity discounts under disruption risks: centralized and decentralized models," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 1387-1432, October.
    15. Ergemen, Yunus Emre & Haldrup, Niels & Rodríguez-Caballero, Carlos Vladimir, 2016. "Common long-range dependence in a panel of hourly Nord Pool electricity prices and loads," Energy Economics, Elsevier, vol. 60(C), pages 79-96.
    16. Modan Yan & Haiyun Liu, 2024. "The Impact of Digital Trade Barriers on Technological Innovation Efficiency and Sustainable Development," Sustainability, MDPI, vol. 16(12), pages 1-19, June.
    17. Galip Gençyürk, 2024. "Volatility Modeling and Spillover: The Turkish and Russian Stock Markets," Istanbul Business Research, Istanbul University Business School, vol. 53(1), pages 81-101, April.
    18. Guoqing Zhao & Shaofeng Liu & Carmen Lopez & Yi Wang & Haiyan Lu & Jinhua Zhang, 2024. "Identification, establishment of connection, and clustering of social risks involved in the agri-food supply chains: a cross-country comparative study," Annals of Operations Research, Springer, vol. 338(2), pages 1241-1282, July.
    19. Pérez-Campuzano, Darío & Rubio Andrada, Luis & Morcillo Ortega, Patricio & López-Lázaro, Antonio, 2022. "Visualizing the historical COVID-19 shock in the US airline industry: A Data Mining approach for dynamic market surveillance," Journal of Air Transport Management, Elsevier, vol. 101(C).
    20. Huang, Nianbing & Liu, Yu, 2024. "Structural tax reduction, financing constraint relief and enterprise innovation efficiency," Finance Research Letters, Elsevier, vol. 60(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:44:y:2022:i:5:d:10.1007_s10878-022-00911-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.