IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v44y2022i5d10.1007_s10878-022-00898-3.html
   My bibliography  Save this article

Online algorithms for the maximum k-interval coverage problem

Author

Listed:
  • Songhua Li

    (City University of Hong Kong
    Singapore University of Technology and Design)

  • Minming Li

    (City University of Hong Kong)

  • Lingjie Duan

    (Singapore University of Technology and Design)

  • Victor C. S. Lee

    (The University of Hong Kong)

Abstract

We study the online maximum coverage problem on a target interval, in which, given an online sequence of sub-intervals (which may intersect among each other) to arrive, we aim to select at most k of the sub-intervals such that the total covered length of the target interval is maximized. The decision to accept or reject each sub-interval is made immediately and irrevocably right at the release time of the sub-interval. We comprehensively study various settings of this problem regarding both the length of each released sub-interval and the total number of released sub-intervals. To begin with, we investigate the offline version of the problem where the sequence of all the released sub-intervals is known in advance to the decision-maker and propose two polynomial-time optimal solutions to different settings of our offline problem. For the online problem, lower bounds on the competitive ratio are first proposed on our well-designed release schemes of sub-intervals. Then, we propose a Single-threshOld-based deterministic Algorithm (SOA), which adds a sub-interval if the added length without overlap exceeds a certain threshold, achieving competitive ratios close to the lower bounds. Further, we extend SOA to a Double-threshOlds-based deterministic Algorithm (DOA) by using the first threshold for exploration and the second threshold (larger than the first one) for exploitation. With the two thresholds generated by our proposed program, we show that DOA outperforms SOA slightly in the worst-case scenario. Moreover, we show that more thresholds cannot induce better worst-case performance of an online deterministic algorithm as long as those thresholds are used in non-increasing order in accepting sub-intervals.

Suggested Citation

  • Songhua Li & Minming Li & Lingjie Duan & Victor C. S. Lee, 2022. "Online algorithms for the maximum k-interval coverage problem," Journal of Combinatorial Optimization, Springer, vol. 44(5), pages 3364-3404, December.
  • Handle: RePEc:spr:jcomop:v:44:y:2022:i:5:d:10.1007_s10878-022-00898-3
    DOI: 10.1007/s10878-022-00898-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-022-00898-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-022-00898-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reuven Cohen & Mira Gonen, 2019. "On interval and circular-arc covering problems," Annals of Operations Research, Springer, vol. 275(2), pages 281-295, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:44:y:2022:i:5:d:10.1007_s10878-022-00898-3. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.