IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v44y2022i3d10.1007_s10878-020-00534-y.html
   My bibliography  Save this article

Isolation branching: a branch and bound algorithm for the k-terminal cut problem

Author

Listed:
  • Mark Velednitsky

    (University of California)

  • Dorit S. Hochbaum

    (University of California)

Abstract

In the k-terminal cut problem, we are given a graph with edge weights and k distinct vertices called “terminals.” The goal is to remove a minimum weight collection of edges from the graph such that there is no path between any pair of terminals. The k-terminal cut problem is NP-hard. The k-terminal cut problem has been extensively studied and a number of algorithms have been devised for it. Most are approximation algorithms. There are also fixed-parameter tractable algorithms, but none have been shown empirically practical. It is also possible to apply implicit enumeration using any integer programming formulation of the problem and solve it with a branch-and-bound algorithm. Here, we present a branch-and-bound algorithm for the k-terminal cut problem which does not rely on an integer programming formulation. Our algorithm employs “minimum isolating cuts” and, for this reason, we call our branch-and-bound algorithm Isolation Branching. In an empirical experiment, we compare the performance of Isolation Branching to that of a branch-and-bound applied to the strongest known integer programming formulation of k-terminal cut. The integer programming branch-and-bound procedure is implemented with Gurobi, a commercial mixed-integer programming solver. We compare the performance of the two approaches for real-world instances and simulated data. The results on real data indicate that Isolation Branching, coded in Python, runs an order of magnitude faster than Gurobi for problems of sizes of up to tens of thousands of vertices and hundreds of thousands of edges. Our results on simulated data also indicate that Isolation Branching scales more effectively. Though we primarily focus on creating a practical tool for k-terminal cut, as a byproduct of our algorithm we prove that the complexity of Isolation Branching is fixed-parameter tractable with respect to the size of the optimal solution, thus providing an alternative, constructive, and somewhat simpler, proof of this fact.

Suggested Citation

  • Mark Velednitsky & Dorit S. Hochbaum, 2022. "Isolation branching: a branch and bound algorithm for the k-terminal cut problem," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 1659-1679, October.
  • Handle: RePEc:spr:jcomop:v:44:y:2022:i:3:d:10.1007_s10878-020-00534-y
    DOI: 10.1007/s10878-020-00534-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-020-00534-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-020-00534-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Olivier Goldschmidt & Dorit S. Hochbaum, 1994. "A Polynomial Algorithm for the k-cut Problem for Fixed k," Mathematics of Operations Research, INFORMS, vol. 19(1), pages 24-37, February.
    2. David R. Karger & Philip Klein & Cliff Stein & Mikkel Thorup & Neal E. Young, 2004. "Rounding Algorithms for a Geometric Embedding of Minimum Multiway Cut," Mathematics of Operations Research, INFORMS, vol. 29(3), pages 436-461, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark Velednitsky & Dorit S. Hochbaum, 0. "Isolation branching: a branch and bound algorithm for the k-terminal cut problem," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-21.
    2. Ponce, Diego & Puerto, Justo & Temprano, Francisco, 2024. "Mixed-integer linear programming formulations and column generation algorithms for the Minimum Normalized Cuts problem on networks," European Journal of Operational Research, Elsevier, vol. 316(2), pages 519-538.
    3. Yan T. Yang & Barak Fishbain & Dorit S. Hochbaum & Eric B. Norman & Erik Swanberg, 2014. "The Supervised Normalized Cut Method for Detecting, Classifying, and Identifying Special Nuclear Materials," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 45-58, February.
    4. Marie-Christine Costa & Dominique Werra & Christophe Picouleau, 2011. "Minimum d-blockers and d-transversals in graphs," Journal of Combinatorial Optimization, Springer, vol. 22(4), pages 857-872, November.
    5. Niv Buchbinder & Roy Schwartz & Baruch Weizman, 2021. "Simplex Transformations and the Multiway Cut Problem," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 757-771, May.
    6. Yuefang Sun & Chenchen Wu & Xiaoyan Zhang & Zhao Zhang, 2022. "Computation and algorithm for the minimum k-edge-connectivity of graphs," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 1741-1752, October.
    7. Costa, Marie-Christine & Letocart, Lucas & Roupin, Frederic, 2005. "Minimal multicut and maximal integer multiflow: A survey," European Journal of Operational Research, Elsevier, vol. 162(1), pages 55-69, April.
    8. Dmitry Krushinsky & Boris Goldengorin, 2012. "An exact model for cell formation in group technology," Computational Management Science, Springer, vol. 9(3), pages 323-338, August.
    9. Hiroshi Nagamochi & Shigeki Katayama & Toshihide Ibaraki, 2000. "A Faster Algorithm for Computing Minimum 5-Way and 6-Way Cuts in Graphs," Journal of Combinatorial Optimization, Springer, vol. 4(2), pages 151-169, June.
    10. Mourad Baïou & Francisco Barahona & Ali Ridha Mahjoub, 2000. "Separation of Partition Inequalities," Mathematics of Operations Research, INFORMS, vol. 25(2), pages 243-254, May.
    11. Alena Otto & Erwin Pesch, 2017. "Operation of shunting yards: train-to-yard assignment problem," Journal of Business Economics, Springer, vol. 87(4), pages 465-486, May.
    12. Yuefang Sun & Chenchen Wu & Xiaoyan Zhang & Zhao Zhang, 0. "Computation and algorithm for the minimum k-edge-connectivity of graphs," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-12.
    13. Yang, Yayu & Zhang, Mingzu & Meng, Jixiang, 2024. "Link fault tolerance of BC networks and folded hypercubes on h-extra r-component edge-connectivity," Applied Mathematics and Computation, Elsevier, vol. 462(C).
    14. Mark Velednitsky, 2022. "Solving $$(k-1)$$ ( k - 1 ) -stable instances of k-terminal cut with isolating cuts," Journal of Combinatorial Optimization, Springer, vol. 43(2), pages 297-311, March.
    15. Hong Liu & Peng Zhang, 2014. "On the generalized multiway cut in trees problem," Journal of Combinatorial Optimization, Springer, vol. 27(1), pages 65-77, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:44:y:2022:i:3:d:10.1007_s10878-020-00534-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.