IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v44y2022i2d10.1007_s10878-022-00879-6.html
   My bibliography  Save this article

Estimation of distribution algorithms using Gaussian Bayesian networks to solve industrial optimization problems constrained by environment variables

Author

Listed:
  • Vicente P. Soloviev

    (Universidad Politécnica de Madrid)

  • Pedro Larrañaga

    (Universidad Politécnica de Madrid)

  • Concha Bielza

    (Universidad Politécnica de Madrid)

Abstract

Many real-world optimization problems involve two different subsets of variables: decision variables, and those variables which are not present in the cost function but constrain the solutions, and thus, must be considered during optimization. Thus, dependencies between and within both subsets of variables must be considered. In this paper, an estimation of distribution algorithm (EDA) is implemented to solve this type of complex optimization problems. A Gaussian Bayesian network is used to build an abstraction model of the search space in each iteration to identify patterns among the variables. As the algorithm is initialized from data, we introduce a new hyper-parameter to control the influence of the initial data in the decisions made during the EDA execution. The results show that our algorithm improves the cost function more than the expert knowledge does.

Suggested Citation

  • Vicente P. Soloviev & Pedro Larrañaga & Concha Bielza, 2022. "Estimation of distribution algorithms using Gaussian Bayesian networks to solve industrial optimization problems constrained by environment variables," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1077-1098, September.
  • Handle: RePEc:spr:jcomop:v:44:y:2022:i:2:d:10.1007_s10878-022-00879-6
    DOI: 10.1007/s10878-022-00879-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-022-00879-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-022-00879-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yindong Shen & Jingpeng Li & Kunkun Peng, 2017. "An estimation of distribution algorithm for public transport driver scheduling," International Journal of Operational Research, Inderscience Enterprises Ltd, vol. 28(2), pages 245-262.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heil, Julia & Hoffmann, Kirsten & Buscher, Udo, 2020. "Railway crew scheduling: Models, methods and applications," European Journal of Operational Research, Elsevier, vol. 283(2), pages 405-425.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:44:y:2022:i:2:d:10.1007_s10878-022-00879-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.