IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v44y2022i2d10.1007_s10878-022-00866-x.html
   My bibliography  Save this article

A sifting-edges algorithm for accelerating the computation of absolute 1-center in graphs

Author

Listed:
  • Wei Ding

    (Zhejiang University of Water Resources and Electric Power)

  • Ke Qiu

    (Brock University)

  • Yu Zhou

    (Taiyuan University of Technology)

  • Zhou Ye

    (Zhejiang Ocean University)

Abstract

Let $$G = (V, E, w)$$ G = ( V , E , w ) be an undirected connected edge-weighted graph, where V is the n-vertices set, E is the m-edges set, and $$w: E \rightarrow \mathbb {R}^+$$ w : E → R + is a positive edge-weight function. Given $$G = (V, E, w)$$ G = ( V , E , w ) , a subset $$X \subseteq V$$ X ⊆ V of p terminals, and a subset $$F \subseteq E$$ F ⊆ E of candidate edges, the Absolute 1-Center Problem (A1CP) aims to find a point on some edge in F to minimize the distance from it to X. This paper revisits this classic and polynomial-time solvable problem from a novel perspective and finds some new and nontrivial properties of it, with the highlight of establishing the relationship between the A1CP and the saddle point of distance matrix. In this paper, we prove that an absolute 1-center is just a vertex 1-center if the all-pairs shortest paths distance matrix from the vertices covered by the candidate edges in F to X has a (global) saddle point. Furthermore, we define the local saddle point of edge and demonstrate that we can sift the candidate edge having a local saddle point. By incorporating the method of sifting edges into the framework of the well-known Kariv and Hakimi’s algorithm, we develop an $$O(m + p m^*+ n p \log p)$$ O ( m + p m ∗ + n p log p ) -time algorithm for A1CP, where $$m^*$$ m ∗ is the number of the remaining candidate edges. Specifically, it takes $$O(m^*n + n^2 \log n)$$ O ( m ∗ n + n 2 log n ) time to apply our algorithm to the classic A1CP when the distance matrix is known and $$O(m n + n^2 \log n)$$ O ( m n + n 2 log n ) time when the distance matrix is unknown, which are smaller than $$O(mn + n^2 \log n)$$ O ( m n + n 2 log n ) and $$O(mn + n^3)$$ O ( m n + n 3 ) of Kariv and Hakimi’s algorithm, respectively.

Suggested Citation

  • Wei Ding & Ke Qiu & Yu Zhou & Zhou Ye, 2022. "A sifting-edges algorithm for accelerating the computation of absolute 1-center in graphs," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 905-920, September.
  • Handle: RePEc:spr:jcomop:v:44:y:2022:i:2:d:10.1007_s10878-022-00866-x
    DOI: 10.1007/s10878-022-00866-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-022-00866-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-022-00866-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei Ding & Ke Qiu, 2017. "An FPTAS for generalized absolute 1-center problem in vertex-weighted graphs," Journal of Combinatorial Optimization, Springer, vol. 34(4), pages 1084-1095, November.
    2. Wei Ding & Ke Qiu, 2014. "Algorithms for the minimum diameter terminal Steiner tree problem," Journal of Combinatorial Optimization, Springer, vol. 28(4), pages 837-853, November.
    3. S. L. Hakimi, 1964. "Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph," Operations Research, INFORMS, vol. 12(3), pages 450-459, June.
    4. G. Y. Handler, 1973. "Minimax Location of a Facility in an Undirected Tree Graph," Transportation Science, INFORMS, vol. 7(3), pages 287-293, August.
    5. A. J. Goldman, 1972. "Minimax Location of a Facility in a Network," Transportation Science, INFORMS, vol. 6(4), pages 407-418, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mulder, H.M. & Pelsmajer, M.J. & Reid, K.B., 2006. "Generalized centrality in trees," Econometric Institute Research Papers EI 2006-16, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Wei Ding & Ke Qiu, 2017. "An FPTAS for generalized absolute 1-center problem in vertex-weighted graphs," Journal of Combinatorial Optimization, Springer, vol. 34(4), pages 1084-1095, November.
    3. Wei Ding & Ke Qiu, 2020. "Approximating the asymmetric p-center problem in parameterized complete digraphs," Journal of Combinatorial Optimization, Springer, vol. 40(1), pages 21-35, July.
    4. Zvi Drezner & G. O. Wesolowsky, 1991. "Facility location when demand is time dependent," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(5), pages 763-777, October.
    5. Xinqiang Qian & Xiucui Guan & Junhua Jia & Qiao Zhang & Panos M. Pardalos, 2023. "Vertex quickest 1-center location problem on trees and its inverse problem under weighted $$l_\infty $$ l ∞ norm," Journal of Global Optimization, Springer, vol. 85(2), pages 461-485, February.
    6. Jafar Fathali & Mehdi Zaferanieh, 2023. "The balanced 2-median and 2-maxian problems on a tree," Journal of Combinatorial Optimization, Springer, vol. 45(2), pages 1-16, March.
    7. ReVelle, C.S. & Eiselt, H.A. & Daskin, M.S., 2008. "A bibliography for some fundamental problem categories in discrete location science," European Journal of Operational Research, Elsevier, vol. 184(3), pages 817-848, February.
    8. Berman, Oded & Drezner, Zvi & Wesolowsky, George O., 2007. "The transfer point location problem," European Journal of Operational Research, Elsevier, vol. 179(3), pages 978-989, June.
    9. Rainer E. Burkard & Johannes Hatzl, 2010. "Median problems with positive and negative weights on cycles and cacti," Journal of Combinatorial Optimization, Springer, vol. 20(1), pages 27-46, July.
    10. Alfandari, Laurent, 2004. "Choice Rules with Size Constraints for Multiple Criteria Decision Making," ESSEC Working Papers DR 04002, ESSEC Research Center, ESSEC Business School.
    11. S Salhi & A Al-Khedhairi, 2010. "Integrating heuristic information into exact methods: The case of the vertex p-centre problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(11), pages 1619-1631, November.
    12. M Horn, 1996. "Analysis and Computational Schemes for p-Median Heuristics," Environment and Planning A, , vol. 28(9), pages 1699-1708, September.
    13. Daoqin Tong & Alan T. Murray, 2009. "Maximising coverage of spatial demand for service," Papers in Regional Science, Wiley Blackwell, vol. 88(1), pages 85-97, March.
    14. Schnepper, Teresa & Klamroth, Kathrin & Stiglmayr, Michael & Puerto, Justo, 2019. "Exact algorithms for handling outliers in center location problems on networks using k-max functions," European Journal of Operational Research, Elsevier, vol. 273(2), pages 441-451.
    15. Davood Shishebori & Lawrence Snyder & Mohammad Jabalameli, 2014. "A Reliable Budget-Constrained FL/ND Problem with Unreliable Facilities," Networks and Spatial Economics, Springer, vol. 14(3), pages 549-580, December.
    16. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    17. Behrens, Kristian, 2007. "On the location and lock-in of cities: Geography vs transportation technology," Regional Science and Urban Economics, Elsevier, vol. 37(1), pages 22-45, January.
    18. Jiwon Baik & Alan T. Murray, 2022. "Locating a facility to simultaneously address access and coverage goals," Papers in Regional Science, Wiley Blackwell, vol. 101(5), pages 1199-1217, October.
    19. Csiszár, Csaba & Csonka, Bálint & Földes, Dávid & Wirth, Ervin & Lovas, Tamás, 2020. "Location optimisation method for fast-charging stations along national roads," Journal of Transport Geography, Elsevier, vol. 88(C).
    20. Ashraf Abd El Karim & Mohsen M. Awawdeh, 2020. "Integrating GIS Accessibility and Location-Allocation Models with Multicriteria Decision Analysis for Evaluating Quality of Life in Buraidah City, KSA," Sustainability, MDPI, vol. 12(4), pages 1-28, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:44:y:2022:i:2:d:10.1007_s10878-022-00866-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.