IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v43y2022i5d10.1007_s10878-021-00715-3.html
   My bibliography  Save this article

Non-resumable scheduling on a single bounded parallel-batch machine with periodic maintenance

Author

Listed:
  • Jing Fan

    (Shanghai Polytechnic University)

  • Hui Shi

    (Shanghai Jiaotong University)

Abstract

We consider the problem of scheduling a set of jobs with different processing times and sizes on a single bounded parallel-batch machine with periodic maintenance. Because the machine is in batch-processing model and the capacity is fixed, several jobs can be processed simultaneously in a batch provided that the total size of the jobs in the batch doesn’t exceed the machine capacity. And the processing time of a batch is the largest processing time of the jobs contained in the batch. Meanwhile, the production of each batch is non-resumable, that is, if a batch cannot be completed processing before some maintenance, that batch needs to be processed anew once the machine returns available. Our goal is to minimize the makespan. We first consider two special cases where the jobs have the same sizes or the same processing times, both of which are strongly NP-hard. We present two different approximation algorithms for them and show that these two algorithms have the same tight worst-case ratio of 2. We then consider the general case where the jobs have the arbitrary processing times and arbitrary sizes, for which we propose a 17/5-approximation algorithm.

Suggested Citation

  • Jing Fan & Hui Shi, 2022. "Non-resumable scheduling on a single bounded parallel-batch machine with periodic maintenance," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1645-1654, July.
  • Handle: RePEc:spr:jcomop:v:43:y:2022:i:5:d:10.1007_s10878-021-00715-3
    DOI: 10.1007/s10878-021-00715-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-021-00715-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-021-00715-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guochuan Zhang & Xiaoqiang Cai & C.‐Y Lee & C.K Wong, 2001. "Minimizing makespan on a single batch processing machine with nonidentical job sizes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(3), pages 226-240, April.
    2. Gyorgy Dosa & Zhiyi Tan & Zsolt Tuza & Yujie Yan & Cecília Sik Lányi, 2014. "Improved bounds for batch scheduling with nonidentical job sizes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(5), pages 351-358, August.
    3. Jing Fan & Xiwen Lu, 2015. "Supply chain scheduling problem in the hospital with periodic working time on a single machine," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 892-905, November.
    4. Wenhua Li & Xing Chai, 2019. "The medical laboratory scheduling for weighted flow-time," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 83-94, January.
    5. B.‐Y. Cheng & J.Y.‐T. Leung & K. Li & S.‐L. Yang, 2015. "Single batch machine scheduling with deliveries," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(6), pages 470-482, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Bayi & Leung, Joseph Y.-T. & Li, Kai & Yang, Shanlin, 2019. "Integrated optimization of material supplying, manufacturing, and product distribution: Models and fast algorithms," European Journal of Operational Research, Elsevier, vol. 277(1), pages 100-111.
    2. Yuanxiao Wu & Xiwen Lu, 2022. "Capacitated vehicle routing problem on line with unsplittable demands," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 1953-1963, October.
    3. Jing Fan & Hui Shi, 0. "A three-stage supply chain scheduling problem based on the nursing assistants’ daily work in a hospital," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-13.
    4. Jing Fan & Hui Shi, 2021. "A three-stage supply chain scheduling problem based on the nursing assistants’ daily work in a hospital," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 896-908, November.
    5. Yuanxiao Wu & Xiwen Lu, 0. "Capacitated vehicle routing problem on line with unsplittable demands," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-11.
    6. Zhiguo Wang & Lufei Huang & Cici Xiao He, 2021. "A multi-objective and multi-period optimization model for urban healthcare waste’s reverse logistics network design," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 785-812, November.
    7. Xu, Jun & Wang, Jun-Qiang & Liu, Zhixin, 2022. "Parallel batch scheduling: Impact of increasing machine capacity," Omega, Elsevier, vol. 108(C).
    8. Muter, İbrahim, 2020. "Exact algorithms to minimize makespan on single and parallel batch processing machines," European Journal of Operational Research, Elsevier, vol. 285(2), pages 470-483.
    9. Zhichao Geng & Jiayu Liu, 0. "Single machine batch scheduling with two non-disjoint agents and splitable jobs," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-22.
    10. Gengjun Gao & Yuxuan Che & Jian Shen, 0. "Path optimization for joint distribution of medical consumables under hospital SPD supply chain mode," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-18.
    11. Zhiguo Wang & Lufei Huang & Cici Xiao He, 0. "A multi-objective and multi-period optimization model for urban healthcare waste’s reverse logistics network design," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-28.
    12. Florian Jaehn & Sergey Kovalev & Mikhail Y. Kovalyov & Erwin Pesch, 2014. "Multiproduct batching and scheduling with buffered rework: The case of a car paint shop," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(6), pages 458-471, September.
    13. Zhang, Hongbin & Yang, Yu & Wu, Feng, 2024. "Scheduling a set of jobs with convex piecewise linear cost functions on a single-batch-processing machine," Omega, Elsevier, vol. 122(C).
    14. Huidan Lin & Qun Li & Xueguo Xu & Ying Zhang, 2021. "Research on dispatch of drugs and consumables in SPD warehouse of large scale hospital under uncertain environment: take respiratory consumables as an example," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 848-865, November.
    15. Zhichao Geng & Jiayu Liu, 2020. "Single machine batch scheduling with two non-disjoint agents and splitable jobs," Journal of Combinatorial Optimization, Springer, vol. 40(3), pages 774-795, October.
    16. Rongqi Li & Zhiyi Tan & Qianyu Zhu, 0. "Batch scheduling of nonidentical job sizes with minsum criteria," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-22.
    17. Yuzhong Zhang & Zhigang Cao, 2008. "An asymptotic PTAS for batch scheduling with nonidentical job sizes to minimize makespan," Journal of Combinatorial Optimization, Springer, vol. 16(2), pages 119-126, August.
    18. Wenhua Li & Weina Zhai & Xing Chai, 2019. "Online Bi-Criteria Scheduling on Batch Machines with Machine Costs," Mathematics, MDPI, vol. 7(10), pages 1-11, October.
    19. Gyorgy Dosa & Zhiyi Tan & Zsolt Tuza & Yujie Yan & Cecília Sik Lányi, 2014. "Improved bounds for batch scheduling with nonidentical job sizes," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(5), pages 351-358, August.
    20. Miaomiao Jin & Xiaoxia Liu & Wenchang Luo, 2020. "Single-Machine Parallel-Batch Scheduling with Nonidentical Job Sizes and Rejection," Mathematics, MDPI, vol. 8(2), pages 1-8, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:43:y:2022:i:5:d:10.1007_s10878-021-00715-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.