IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v36y2018i4d10.1007_s10878-017-0202-5.html
   My bibliography  Save this article

On residual approximation in solution extension problems

Author

Listed:
  • Mathias Weller

    (LIRMM - CNRS UMR 5506)

  • Annie Chateau

    (LIRMM - CNRS UMR 5506)

  • Rodolphe Giroudeau

    (LIRMM - CNRS UMR 5506)

  • Jean-Claude König

    (LIRMM - CNRS UMR 5506)

  • Valentin Pollet

    (LIRMM - CNRS UMR 5506)

Abstract

The solution extension variant of a problem consists in, being given an instance and a partial solution, finding the best solution comprising the given partial solution. Many problems have been studied with a similar approach. For instance the Pre-Coloring Extension problem, the clustered variant of the Travelling Salesman problem, or the General Routing Problem are in a way typical examples of solution extension variant problems. Motivated by practical applications of such variants, this work aims to explore different aspects around extension on classical optimization problems. We define residue-approximations as algorithms whose performance ratio on the non-prescribed part can be bounded, and corresponding complexity classes. Using residue-approximation, we classify problems according to their residue-approximability, exhibit distinct behaviors and give several examples and first interesting results.

Suggested Citation

  • Mathias Weller & Annie Chateau & Rodolphe Giroudeau & Jean-Claude König & Valentin Pollet, 2018. "On residual approximation in solution extension problems," Journal of Combinatorial Optimization, Springer, vol. 36(4), pages 1195-1220, November.
  • Handle: RePEc:spr:jcomop:v:36:y:2018:i:4:d:10.1007_s10878-017-0202-5
    DOI: 10.1007/s10878-017-0202-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-017-0202-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-017-0202-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michel Gendreau & Gilbert Laporte & Alain Hertz, 1997. "An Approximation Algorithm for the Traveling Salesman Problem with Backhauls," Operations Research, INFORMS, vol. 45(4), pages 639-641, August.
    2. Christos H. Papadimitriou & Mihalis Yannakakis, 1993. "The Traveling Salesman Problem with Distances One and Two," Mathematics of Operations Research, INFORMS, vol. 18(1), pages 1-11, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pourhejazy, Pourya & Zhang, Dali & Zhu, Qinghua & Wei, Fangfang & Song, Shuang, 2021. "Integrated E-waste transportation using capacitated general routing problem with time-window," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Imai, Akio & Nishimura, Etsuko & Current, John, 2007. "A Lagrangian relaxation-based heuristic for the vehicle routing with full container load," European Journal of Operational Research, Elsevier, vol. 176(1), pages 87-105, January.
    2. Federico Della Croce, 2016. "MP or not MP: that is the question," Journal of Scheduling, Springer, vol. 19(1), pages 33-42, February.
    3. Martijn Ee & René Sitters, 2020. "The Chinese deliveryman problem," 4OR, Springer, vol. 18(3), pages 341-356, September.
    4. Wenkai Dai & Yongjie Yang, 2019. "Reoptimization of minimum latency problem revisited: don’t panic when asked to revisit the route after local modifications," Journal of Combinatorial Optimization, Springer, vol. 37(2), pages 601-619, February.
    5. Gerardo Berbeglia & Jean-François Cordeau & Irina Gribkovskaia & Gilbert Laporte, 2007. "Static pickup and delivery problems: a classification scheme and survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 1-31, July.
    6. Hipólito Hernández-Pérez & Juan-José Salazar-González, 2004. "Heuristics for the One-Commodity Pickup-and-Delivery Traveling Salesman Problem," Transportation Science, INFORMS, vol. 38(2), pages 245-255, May.
    7. Mnich, Matthias & Mömke, Tobias, 2018. "Improved integrality gap upper bounds for traveling salesperson problems with distances one and two," European Journal of Operational Research, Elsevier, vol. 266(2), pages 436-457.
    8. Ceranoglu, Ahmet N. & Duman, Ekrem, 2013. "VRP12 (vehicle routing problem with distances one and two) with side constraints," International Journal of Production Economics, Elsevier, vol. 144(2), pages 461-467.
    9. E Duman & M H Ozcelik & A N Ceranoglu, 2005. "A TSP (1,2) application arising in cable assembly shops," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 56(6), pages 642-648, June.
    10. Zhang, Huili & Tong, Weitian & Xu, Yinfeng & Lin, Guohui, 2015. "The Steiner Traveling Salesman Problem with online edge blockages," European Journal of Operational Research, Elsevier, vol. 243(1), pages 30-40.
    11. Monnot, Jerome & Paschos, Vangelis Th. & Toulouse, Sophie, 2003. "Differential approximation results for the traveling salesman problem with distances 1 and 2," European Journal of Operational Research, Elsevier, vol. 145(3), pages 557-568, March.
    12. Shiming Li & Wei Yu & Zhaohui Liu, 2024. "Improved approximation algorithms for the k-path partition problem," Journal of Global Optimization, Springer, vol. 90(4), pages 983-1006, December.
    13. Ganesh, K. & Narendran, T.T., 2007. "CLOVES: A cluster-and-search heuristic to solve the vehicle routing problem with delivery and pick-up," European Journal of Operational Research, Elsevier, vol. 178(3), pages 699-717, May.
    14. Bogdan Armaselu, 2023. "Approximation algorithms for some extensions of the maximum profit routing problem," Journal of Combinatorial Optimization, Springer, vol. 45(1), pages 1-22, January.
    15. Demange, Marc & Paschos, Vangelis Th., 2005. "Polynomial approximation algorithms with performance guarantees: An introduction-by-example," European Journal of Operational Research, Elsevier, vol. 165(3), pages 555-568, September.
    16. Tatarakis, A. & Minis, I., 2009. "Stochastic single vehicle routing with a predefined customer sequence and multiple depot returns," European Journal of Operational Research, Elsevier, vol. 197(2), pages 557-571, September.
    17. Renzo Gómez & Yoshiko Wakabayashi, 2020. "Nontrivial path covers of graphs: existence, minimization and maximization," Journal of Combinatorial Optimization, Springer, vol. 39(2), pages 437-456, February.
    18. Nagy, Gabor & Salhi, Said, 2005. "Heuristic algorithms for single and multiple depot vehicle routing problems with pickups and deliveries," European Journal of Operational Research, Elsevier, vol. 162(1), pages 126-141, April.
    19. Miroslav Chlebík & Janka Chlebíková, 2022. "Weighted amplifiers and inapproximability results for Travelling Salesman problem," Journal of Combinatorial Optimization, Springer, vol. 43(5), pages 1368-1390, July.
    20. Monnot, Jerome, 2005. "Approximation algorithms for the maximum Hamiltonian path problem with specified endpoint(s)," European Journal of Operational Research, Elsevier, vol. 161(3), pages 721-735, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:36:y:2018:i:4:d:10.1007_s10878-017-0202-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.