IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v36y2018i4d10.1007_s10878-017-0174-5.html
   My bibliography  Save this article

The w-centroids and least w-central subtrees in weighted trees

Author

Listed:
  • Erfang Shan

    (Shanghai University
    Shanghai University)

  • Liying Kang

    (Shanghai University)

Abstract

Let T be a weighted tree with a positive number w(v) associated with each vertex v. A subtree S is a w-central subtree of the weighted tree T if it has the minimum eccentricity $$e_L(S)$$ e L ( S ) in median graph $$G_{LW}$$ G L W . A w-central subtree with the minimum vertex weight is called a least w-central subtree of the weighted tree T. In this paper we show that each least w-central subtree of a weighted tree either contains a vertex of the w-centroid or is adjacent to a vertex of the w-centroid. Also, we show that any two least w-central subtrees of a weighted tree either have a nonempty intersection or are adjacent.

Suggested Citation

  • Erfang Shan & Liying Kang, 2018. "The w-centroids and least w-central subtrees in weighted trees," Journal of Combinatorial Optimization, Springer, vol. 36(4), pages 1118-1127, November.
  • Handle: RePEc:spr:jcomop:v:36:y:2018:i:4:d:10.1007_s10878-017-0174-5
    DOI: 10.1007/s10878-017-0174-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-017-0174-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-017-0174-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Margaret L. Brandeau & Samuel S. Chiu, 1989. "An Overview of Representative Problems in Location Research," Management Science, INFORMS, vol. 35(6), pages 645-674, June.
    2. S. L. Hakimi, 1964. "Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph," Operations Research, INFORMS, vol. 12(3), pages 450-459, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khachatryan, Hayk & Jessup, Eric & Casavant, Kenneth, 2010. "A GIS-based Estimation of Regional Biomass Supply and Transportation Costs for Biofuel Plant Least-Cost Location Decisions," 51st Annual Transportation Research Forum, Arlington, Virginia, March 11-13, 2010 207816, Transportation Research Forum.
    2. Zhi-Chun Li & Qian Liu, 2020. "Optimal deployment of emergency rescue stations in an urban transportation corridor," Transportation, Springer, vol. 47(1), pages 445-473, February.
    3. Drexl, Andreas & Klose, Andreas, 2001. "Facility location models for distribution system design," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 546, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    4. Mozhu Wang & Jianming Yao, 2023. "A reliable location design of unmanned vending machines based on customer satisfaction," Electronic Commerce Research, Springer, vol. 23(1), pages 541-575, March.
    5. Aruna Apte & Curtis Heidtke & Javier Salmerón, 2015. "Casualty Collection Points Optimization: A Study for the District of Columbia," Interfaces, INFORMS, vol. 45(2), pages 149-165, April.
    6. Ting Zeng & James Ward, 2005. "The Stochastic Location-Assignment Problem on a Tree," Annals of Operations Research, Springer, vol. 136(1), pages 81-97, April.
    7. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.
    8. Xu, Jianhua & Johnson, Michael P. & Fischbeck, Paul S. & Small, Mitchell J. & VanBriesen, Jeanne M., 2010. "Robust placement of sensors in dynamic water distribution systems," European Journal of Operational Research, Elsevier, vol. 202(3), pages 707-716, May.
    9. Vladimir Marianov & Daniel Serra, 2009. "Median problems in networks," Economics Working Papers 1151, Department of Economics and Business, Universitat Pompeu Fabra.
    10. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    11. Batta, Rajan & Lejeune, Miguel & Prasad, Srinivas, 2014. "Public facility location using dispersion, population, and equity criteria," European Journal of Operational Research, Elsevier, vol. 234(3), pages 819-829.
    12. Dolores R. Santos Peñate & María del Carmen Martel Escobar, 1996. "Modelos de localización para la planificación escolar en el contexto de la LOGSE," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 5, pages 139-159, Junio.
    13. Rudabeh Meskarian & Marion L Penn & Sarah Williams & Thomas Monks, 2017. "A facility location model for analysis of current and future demand for sexual health services," PLOS ONE, Public Library of Science, vol. 12(8), pages 1-18, August.
    14. Alfandari, Laurent, 2004. "Choice Rules with Size Constraints for Multiple Criteria Decision Making," ESSEC Working Papers DR 04002, ESSEC Research Center, ESSEC Business School.
    15. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    16. S Salhi & A Al-Khedhairi, 2010. "Integrating heuristic information into exact methods: The case of the vertex p-centre problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(11), pages 1619-1631, November.
    17. Madadi, AliReza & Kurz, Mary E. & Mason, Scott J. & Taaffe, Kevin M., 2014. "Supply chain design under quality disruptions and tainted materials delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 67(C), pages 105-123.
    18. M Horn, 1996. "Analysis and Computational Schemes for p-Median Heuristics," Environment and Planning A, , vol. 28(9), pages 1699-1708, September.
    19. Eliş, Haluk & Tansel, Barbaros & Oğuz, Osman & Güney, Mesut & Kian, Ramez, 2021. "On guarding real terrains: The terrain guarding and the blocking path problems," Omega, Elsevier, vol. 102(C).
    20. Daoqin Tong & Alan T. Murray, 2009. "Maximising coverage of spatial demand for service," Papers in Regional Science, Wiley Blackwell, vol. 88(1), pages 85-97, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:36:y:2018:i:4:d:10.1007_s10878-017-0174-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.