Relation between the skew-rank of an oriented graph and the independence number of its underlying graph
Author
Abstract
Suggested Citation
DOI: 10.1007/s10878-018-0282-x
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Qu, Hui & Yu, Guihai, 2015. "Bicyclic oriented graphs with skew-rank 2 or 4," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 182-191.
- Lu, Yong & Wang, Ligong & Zhou, Qiannan, 2015. "Bicyclic oriented graphs with skew-rank 6," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 899-908.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jinling Yang & Ligong Wang & Xiuwen Yang, 2021. "Some mixed graphs with H-rank 4, 6 or 8," Journal of Combinatorial Optimization, Springer, vol. 41(3), pages 678-693, April.
- Feng, Zhimin & Huang, Jing & Li, Shuchao & Luo, Xiaobing, 2019. "Relationship between the rank and the matching number of a graph," Applied Mathematics and Computation, Elsevier, vol. 354(C), pages 411-421.
- Xueliang Li & Wen Xia, 2019. "Skew-rank of an oriented graph and independence number of its underlying graph," Journal of Combinatorial Optimization, Springer, vol. 38(1), pages 268-277, July.
- Yong Lu & Ligong Wang & Qiannan Zhou, 2019. "The rank of a complex unit gain graph in terms of the rank of its underlying graph," Journal of Combinatorial Optimization, Springer, vol. 38(2), pages 570-588, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jinling Yang & Ligong Wang & Xiuwen Yang, 2021. "Some mixed graphs with H-rank 4, 6 or 8," Journal of Combinatorial Optimization, Springer, vol. 41(3), pages 678-693, April.
- Yong Lu & Ligong Wang & Qiannan Zhou, 2019. "The rank of a complex unit gain graph in terms of the rank of its underlying graph," Journal of Combinatorial Optimization, Springer, vol. 38(2), pages 570-588, August.
- Lang, Rongling & Li, Tao & Mo, Desen & Shi, Yongtang, 2016. "A novel method for analyzing inverse problem of topological indices of graphs using competitive agglomeration," Applied Mathematics and Computation, Elsevier, vol. 291(C), pages 115-121.
- Lu, Yong & Wang, Ligong & Zhou, Qiannan, 2015. "Bicyclic oriented graphs with skew-rank 6," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 899-908.
More about this item
Keywords
Skew-rank; Oriented graph; Evenly-oriented; Independence number;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:36:y:2018:i:1:d:10.1007_s10878-018-0282-x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.