IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v36y2018i1d10.1007_s10878-016-0058-0.html
   My bibliography  Save this article

Algorithms for connected p-centdian problem on block graphs

Author

Listed:
  • Liying Kang

    (Shanghai University)

  • Jianjie Zhou

    (Shanghai University)

  • Erfang Shan

    (Shanghai University)

Abstract

We consider the facility location problem of locating a set $$X_p$$ X p of p facilities (resources) on a network (or a graph) such that the subnetwork (or subgraph) induced by the selected set $$X_p$$ X p is connected. Two problems on a block graph G are proposed: one problem is to minimizes the sum of its weighted distances from all vertices of G to $$X_p$$ X p , another problem is to minimize the maximum distance from each vertex that is not in $$X_p$$ X p to $$X_p$$ X p and, at the same time, to minimize the sum of its distances from all vertices of G to $$X_p$$ X p . We prove that the first problem is linearly solvable on block graphs with unit edge length. For the second problem, it is shown that the set of Pareto-optimal solutions of the two criteria has cardinality not greater than n, and can be obtained in $$O(n^2)$$ O ( n 2 ) time, where n is the number of vertices of the block graph G.

Suggested Citation

  • Liying Kang & Jianjie Zhou & Erfang Shan, 2018. "Algorithms for connected p-centdian problem on block graphs," Journal of Combinatorial Optimization, Springer, vol. 36(1), pages 252-263, July.
  • Handle: RePEc:spr:jcomop:v:36:y:2018:i:1:d:10.1007_s10878-016-0058-0
    DOI: 10.1007/s10878-016-0058-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-016-0058-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-016-0058-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Becker, Ronald I. & Lari, Isabella & Scozzari, Andrea, 2007. "Algorithms for central-median paths with bounded length on trees," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1208-1220, June.
    2. HANSEN, Pierre & LABBE, Martine & THISSE, Jacques-François, 1991. "From the median to the generalized center," LIDAM Reprints CORE 937, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    3. Gabriel Y. Handler, 1985. "Medi-Centers of a Tree," Transportation Science, INFORMS, vol. 19(3), pages 246-260, August.
    4. Jonathan Halpern, 1978. "Finding Minimal Center-Median Convex Combination (Cent-Dian) of a Graph," Management Science, INFORMS, vol. 24(5), pages 535-544, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kien Trung Nguyen & Nguyen Thanh Hung, 2020. "The inverse connected p-median problem on block graphs under various cost functions," Annals of Operations Research, Springer, vol. 292(1), pages 97-112, September.
    2. Trung Kien Nguyen & Nguyen Thanh Hung & Huong Nguyen-Thu, 2020. "A linear time algorithm for the p-maxian problem on trees with distance constraint," Journal of Combinatorial Optimization, Springer, vol. 40(4), pages 1030-1043, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colebrook, Marcos & Sicilia, Joaquin, 2007. "A polynomial algorithm for the multicriteria cent-dian location problem," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1008-1024, June.
    2. Richard Francis & Timothy Lowe, 2014. "Comparative error bound theory for three location models: continuous demand versus discrete demand," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 144-169, April.
    3. Justo Puerto & Federica Ricca & Andrea Scozzari, 2018. "Extensive facility location problems on networks: an updated review," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(2), pages 187-226, July.
    4. Ohsawa, Yoshiaki, 1999. "A geometrical solution for quadratic bicriteria location models," European Journal of Operational Research, Elsevier, vol. 114(2), pages 380-388, April.
    5. Becker, Ronald I. & Lari, Isabella & Scozzari, Andrea, 2007. "Algorithms for central-median paths with bounded length on trees," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1208-1220, June.
    6. R. L. Francis & T. J. Lowe & Arie Tamir, 2000. "Aggregation Error Bounds for a Class of Location Models," Operations Research, INFORMS, vol. 48(2), pages 294-307, April.
    7. Li, Hongmei & Luo, Taibo & Xu, Yinfeng & Xu, Jiuping, 2018. "Minimax regret vertex centdian location problem in general dynamic networks," Omega, Elsevier, vol. 75(C), pages 87-96.
    8. Dionisio Brito & José Moreno Pérez, 2000. "The generalizedp-Centdian on network," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 8(2), pages 265-285, December.
    9. Lari, Isabella & Ricca, Federica & Scozzari, Andrea, 2008. "Comparing different metaheuristic approaches for the median path problem with bounded length," European Journal of Operational Research, Elsevier, vol. 190(3), pages 587-597, November.
    10. Sune Lauth Gadegaard & Andreas Klose & Lars Relund Nielsen, 2018. "A bi-objective approach to discrete cost-bottleneck location problems," Annals of Operations Research, Springer, vol. 267(1), pages 179-201, August.
    11. Igor Averbakh & Oded Berman, 2000. "Minmax Regret Median Location on a Network Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 12(2), pages 104-110, May.
    12. Ogryczak, Wlodzimierz, 2000. "Inequality measures and equitable approaches to location problems," European Journal of Operational Research, Elsevier, vol. 122(2), pages 374-391, April.
    13. Carrizosa, E. J. & Puerto, J., 1995. "A discretizing algorithm for location problems," European Journal of Operational Research, Elsevier, vol. 80(1), pages 166-174, January.
    14. Martínez-Merino, Luisa I. & Albareda-Sambola, Maria & Rodríguez-Chía, Antonio M., 2017. "The probabilistic p-center problem: Planning service for potential customers," European Journal of Operational Research, Elsevier, vol. 262(2), pages 509-520.
    15. Elena Fernández & Justo Puerto & Antonio Rodríguez-Chía, 2013. "On discrete optimization with ordering," Annals of Operations Research, Springer, vol. 207(1), pages 83-96, August.
    16. Wei Ding & Ke Qiu, 2018. "A quadratic time exact algorithm for continuous connected 2-facility location problem in trees," Journal of Combinatorial Optimization, Springer, vol. 36(4), pages 1262-1298, November.
    17. Alfredo Marín & Stefan Nickel & Sebastian Velten, 2010. "An extended covering model for flexible discrete and equity location problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(1), pages 125-163, February.
    18. ReVelle, C. S. & Eiselt, H. A., 2005. "Location analysis: A synthesis and survey," European Journal of Operational Research, Elsevier, vol. 165(1), pages 1-19, August.
    19. Welch, S. B. & Salhi, S., 1997. "The obnoxious p facility network location problem with facility interaction," European Journal of Operational Research, Elsevier, vol. 102(2), pages 302-319, October.
    20. Yoshiaki Ohsawa, 2000. "Bicriteria Euclidean location associated with maximin and minimax criteria," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(7), pages 581-592, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:36:y:2018:i:1:d:10.1007_s10878-016-0058-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.