IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v35y2018i1d10.1007_s10878-017-0157-6.html
   My bibliography  Save this article

Weak {2}-domination number of Cartesian products of cycles

Author

Listed:
  • Zepeng Li

    (Lanzhou University
    Peking University)

  • Zehui Shao

    (Chengdu University
    Chengdu University)

  • Jin Xu

    (Peking University)

Abstract

For a graph $$G=(V, E)$$ G = ( V , E ) , a weak $$\{2\}$$ { 2 } -dominating function $$f:V\rightarrow \{0,1,2\}$$ f : V → { 0 , 1 , 2 } has the property that $$\sum _{u\in N(v)}f(u)\ge 2$$ ∑ u ∈ N ( v ) f ( u ) ≥ 2 for every vertex $$v\in V$$ v ∈ V with $$f(v)= 0$$ f ( v ) = 0 , where N(v) is the set of neighbors of v in G. The weight of a weak $$\{2\}$$ { 2 } -dominating function f is the sum $$\sum _{v\in V}f(v)$$ ∑ v ∈ V f ( v ) and the minimum weight of a weak $$\{2\}$$ { 2 } -dominating function is the weak $$\{2\}$$ { 2 } -domination number. In this paper, we introduce a discharging approach and provide a short proof for the lower bound of the weak $$\{2\}$$ { 2 } -domination number of $$C_n \Box C_5$$ C n □ C 5 , which was obtained by Stȩpień, et al. (Discrete Appl Math 170:113–116, 2014). Moreover, we obtain the weak $$\{2\}$$ { 2 } -domination numbers of $$C_n \Box C_3$$ C n □ C 3 and $$C_n \Box C_4$$ C n □ C 4 .

Suggested Citation

  • Zepeng Li & Zehui Shao & Jin Xu, 2018. "Weak {2}-domination number of Cartesian products of cycles," Journal of Combinatorial Optimization, Springer, vol. 35(1), pages 75-85, January.
  • Handle: RePEc:spr:jcomop:v:35:y:2018:i:1:d:10.1007_s10878-017-0157-6
    DOI: 10.1007/s10878-017-0157-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-017-0157-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-017-0157-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zofia Stȩpień & Lucjan Szymaszkiewicz & Maciej Zwierzchowski, 2015. "The Cartesian product of cycles with small 2-rainbow domination number," Journal of Combinatorial Optimization, Springer, vol. 30(3), pages 668-674, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong Gao & Kun Li & Yuansheng Yang, 2019. "The k -Rainbow Domination Number of C n □ C m," Mathematics, MDPI, vol. 7(12), pages 1-19, December.
    2. Hong Gao & Changqing Xi & Yuansheng Yang, 2020. "The 3-Rainbow Domination Number of the Cartesian Product of Cycles," Mathematics, MDPI, vol. 8(1), pages 1-20, January.
    3. Kijung Kim, 2020. "The Italian Domination Numbers of Some Products of Directed Cycles," Mathematics, MDPI, vol. 8(9), pages 1-6, September.
    4. Hong Gao & Penghui Wang & Enmao Liu & Yuansheng Yang, 2020. "More Results on Italian Domination in C n □ C m," Mathematics, MDPI, vol. 8(4), pages 1-10, March.
    5. Hong Gao & Tingting Feng & Yuansheng Yang, 2021. "Italian domination in the Cartesian product of paths," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 526-543, February.
    6. Ahlam Almulhim & Bana Al Subaiei & Saiful Rahman Mondal, 2024. "Survey on Roman {2}-Domination," Mathematics, MDPI, vol. 12(17), pages 1-20, September.
    7. Hong Gao & Changqing Xi & Kun Li & Qingfang Zhang & Yuansheng Yang, 2019. "The Italian Domination Numbers of Generalized Petersen Graphs P ( n ,3)," Mathematics, MDPI, vol. 7(8), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong Gao & Changqing Xi & Yuansheng Yang, 2020. "The 3-Rainbow Domination Number of the Cartesian Product of Cycles," Mathematics, MDPI, vol. 8(1), pages 1-20, January.
    2. Zepeng Li & Zehui Shao & Shou-jun Xu, 2019. "2-Rainbow domination stability of graphs," Journal of Combinatorial Optimization, Springer, vol. 38(3), pages 836-845, October.
    3. Hong Gao & Kun Li & Yuansheng Yang, 2019. "The k -Rainbow Domination Number of C n □ C m," Mathematics, MDPI, vol. 7(12), pages 1-19, December.
    4. Hong Gao & Penghui Wang & Enmao Liu & Yuansheng Yang, 2020. "More Results on Italian Domination in C n □ C m," Mathematics, MDPI, vol. 8(4), pages 1-10, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:35:y:2018:i:1:d:10.1007_s10878-017-0157-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.