IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v34y2017i1d10.1007_s10878-016-0061-5.html
   My bibliography  Save this article

Characterizations of k-cutwidth critical trees

Author

Listed:
  • Zhen-Kun Zhang

    (Huanghuai University)

  • Hong-Jian Lai

    (West Virginia University)

Abstract

The cutwidth problem for a graph G is to embed G into a path such that the maximum number of overlap edges (i.e., the congestion) is minimized. The investigations of critical graphs and their structures are meaningful in the study of a graph-theoretic parameters. We study the structures of k-cutwidth $$(k>1)$$ ( k > 1 ) critical trees, and use them to characterize the set of all 4-cutwidth critical trees.

Suggested Citation

  • Zhen-Kun Zhang & Hong-Jian Lai, 2017. "Characterizations of k-cutwidth critical trees," Journal of Combinatorial Optimization, Springer, vol. 34(1), pages 233-244, July.
  • Handle: RePEc:spr:jcomop:v:34:y:2017:i:1:d:10.1007_s10878-016-0061-5
    DOI: 10.1007/s10878-016-0061-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-016-0061-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-016-0061-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenkun Zhang & Hongjian Lai, 2023. "Structures of Critical Nontree Graphs with Cutwidth Four," Mathematics, MDPI, vol. 11(7), pages 1-22, March.
    2. Zhen-Kun Zhang & Zhong Zhao & Liu-Yong Pang, 2022. "Decomposability of a class of k-cutwidth critical graphs," Journal of Combinatorial Optimization, Springer, vol. 43(2), pages 384-401, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:34:y:2017:i:1:d:10.1007_s10878-016-0061-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.