IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v32y2016i2d10.1007_s10878-015-9888-4.html
   My bibliography  Save this article

An improved bound on 2-distance coloring plane graphs with girth 5

Author

Listed:
  • Wei Dong

    (Southeast University
    Nanjing Xiaozhuang University)

  • Wensong Lin

    (Southeast University)

Abstract

A vertex coloring is called $$2$$ 2 -distance if any two vertices at distance at most $$2$$ 2 from each other get different colors. The minimum number of colors in 2-distance colorings of $$G$$ G is its 2-distance chromatic number, denoted by $$\chi _2(G)$$ χ 2 ( G ) . Let $$G$$ G be a plane graph with girth at least $$5$$ 5 . In this paper, we prove that $$\chi _2(G)\le \Delta +8$$ χ 2 ( G ) ≤ Δ + 8 for arbitrary $$\Delta (G)$$ Δ ( G ) , which partially improves some known results.

Suggested Citation

  • Wei Dong & Wensong Lin, 2016. "An improved bound on 2-distance coloring plane graphs with girth 5," Journal of Combinatorial Optimization, Springer, vol. 32(2), pages 645-655, August.
  • Handle: RePEc:spr:jcomop:v:32:y:2016:i:2:d:10.1007_s10878-015-9888-4
    DOI: 10.1007/s10878-015-9888-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-015-9888-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-015-9888-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuehua Bu & Xubo Zhu, 2012. "An optimal square coloring of planar graphs," Journal of Combinatorial Optimization, Springer, vol. 24(4), pages 580-592, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoang La & Mickael Montassier, 2022. "2-Distance list $$(\Delta +2)$$ ( Δ + 2 ) -coloring of planar graphs with girth at least 10," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1356-1375, September.
    2. Wei Dong & Baogang Xu, 2017. "2-Distance coloring of planar graphs with girth 5," Journal of Combinatorial Optimization, Springer, vol. 34(4), pages 1302-1322, November.
    3. Junlei Zhu & Yuehua Bu & Miltiades P. Pardalos & Hongwei Du & Huijuan Wang & Bin Liu, 2018. "Optimal channel assignment and L(p, 1)-labeling," Journal of Global Optimization, Springer, vol. 72(3), pages 539-552, November.
    4. Qiming Fang & Li Zhang, 2022. "Sharp upper bound of injective coloring of planar graphs with girth at least 5," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1161-1198, September.
    5. Yu, Jiahao & Chen, Min & Wang, Weifan, 2023. "2-Distance choosability of planar graphs with a restriction for maximum degree," Applied Mathematics and Computation, Elsevier, vol. 448(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiming Fang & Li Zhang, 2022. "Sharp upper bound of injective coloring of planar graphs with girth at least 5," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1161-1198, September.
    2. Dan Yi & Junlei Zhu & Lixia Feng & Jiaxin Wang & Mengyini Yang, 2019. "Optimal r-dynamic coloring of sparse graphs," Journal of Combinatorial Optimization, Springer, vol. 38(2), pages 545-555, August.
    3. Hoang La & Mickael Montassier, 2022. "2-Distance list $$(\Delta +2)$$ ( Δ + 2 ) -coloring of planar graphs with girth at least 10," Journal of Combinatorial Optimization, Springer, vol. 44(2), pages 1356-1375, September.
    4. Wei Dong & Baogang Xu, 2017. "2-Distance coloring of planar graphs with girth 5," Journal of Combinatorial Optimization, Springer, vol. 34(4), pages 1302-1322, November.
    5. Yuehua Bu & Xiaoyan Yan, 2015. "List 2-distance coloring of planar graphs," Journal of Combinatorial Optimization, Springer, vol. 30(4), pages 1180-1195, November.
    6. Junlei Zhu & Yuehua Bu & Miltiades P. Pardalos & Hongwei Du & Huijuan Wang & Bin Liu, 2018. "Optimal channel assignment and L(p, 1)-labeling," Journal of Global Optimization, Springer, vol. 72(3), pages 539-552, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:32:y:2016:i:2:d:10.1007_s10878-015-9888-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.