IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v27y2014i2d10.1007_s10878-012-9504-9.html
   My bibliography  Save this article

An improved distributed data aggregation scheduling in wireless sensor networks

Author

Listed:
  • Deying Li

    (Renmin University of China)

  • Qinghua Zhu

    (Renmin University of China)

  • Hongwei Du

    (Harbin Institute of Technology)

  • Jianzhong Li

    (Harbin Institute of Technology)

Abstract

This paper focuses on the distributed data aggregation collision-free scheduling problem, which is one of very important issues in wireless sensor networks. Bo et al. (Proc. IEEE INFOCOM, 2009) proposed an approximate distributed algorithm for the problem and Xu et al. (Proc. ACM FOWANC, 2009) proposed a centralized algorithm and its distributed implementation to generate a collision-free scheduling for the problem, which are the only two existing distributed algorithms. Unfortunately, there are a few mistakes in their performance analysis in Bo et al. (Proc. IEEE INFOCOM, 2009), and the distributed algorithm can not get the same latency as the centralized algorithm because the distributed implementation was not an accurate implementation of the centralized algorithm (Xu et al. in Proc. ACM FOWANC, 2009). According to those, we propose an improved distributed algorithm to generate a collision-free schedule for data aggregation in wireless sensor networks. Not an arbitrary tree in Bo et al. (Proc. IEEE INFOCOM, 2009) but a breadth first search tree (BFS) rooted at the sink node is adopted, the bounded latency 61R+5Δ−67 of the schedule is obtained, where R is the radius of the network with respect to the sink node and Δ is the maximum node degree. We also correct the latency bound of the schedule in Bo et al. (Proc. IEEE INFOCOM, 2009) as 61D+5Δ−67, where D is a diameter of the network and prove that our algorithm is more efficient than the algorithm (Bo et al. in Proc. IEEE INFOCOM, 2009). We also give a latency bound for the distributed implementation in Xu et al. (Proc. ACM FOWANC, 2009).

Suggested Citation

  • Deying Li & Qinghua Zhu & Hongwei Du & Jianzhong Li, 2014. "An improved distributed data aggregation scheduling in wireless sensor networks," Journal of Combinatorial Optimization, Springer, vol. 27(2), pages 221-240, February.
  • Handle: RePEc:spr:jcomop:v:27:y:2014:i:2:d:10.1007_s10878-012-9504-9
    DOI: 10.1007/s10878-012-9504-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-012-9504-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-012-9504-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui Wang & Jiguo Yu & Dongxiao Yu & Baogui Huang & Shanshan Yu, 2016. "An improved approximation algorithm for the shortest link scheduling in wireless networks under SINR and hypergraph models," Journal of Combinatorial Optimization, Springer, vol. 32(4), pages 1052-1067, November.
    2. Kejia Zhang & Qilong Han & Guisheng Yin & Haiwei Pan, 2016. "OFDP: a distributed algorithm for finding disjoint paths with minimum total length in wireless sensor networks," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1623-1641, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:27:y:2014:i:2:d:10.1007_s10878-012-9504-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.