IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v26y2013i3d10.1007_s10878-011-9408-0.html
   My bibliography  Save this article

Bin packing with “Largest In Bottom” constraint: tighter bounds and generalizations

Author

Listed:
  • Gyorgy Dosa

    (University of Pannonia)

  • Zsolt Tuza

    (Hungarian Academy of Sciences
    University of Pannonia)

  • Deshi Ye

    (Zhejiang University)

Abstract

The (online) bin packing problem with LIB constraint is stated as follows: The items arrive one by one, and must be packed into unit capacity bins, but a bigger item cannot be packed into a bin which already contains a smaller item. The number of used bins has to be minimized as usually. We show that the absolute performance bound of algorithm First Fit is not worse than 2+1/6≈2.1666 for the problem, improving the previous best upper bound 2.5. Moreover, if the item sizes do not exceed 1/d, then we improve the previous best result 2+1/d to 2+1/d(d+2), for any d≥2. (Both previously best results are due to Epstein, Nav. Res. Logist. 56(8):780–786, 2009.) Furthermore, we define a problem with the generalized LIB constraint, where some incoming items cannot be packed into the bins of some already packed items. The (in)compatibility of the incoming item with the items already packed becomes known only at the arrival of the actual item, and is given by an undirected graph (and, as usual in case of online graph problems, we can see only that part of the graph what already arrived). We show that 3 is an upper bound for this general problem if some natural transitivity constraint is satisfied.

Suggested Citation

  • Gyorgy Dosa & Zsolt Tuza & Deshi Ye, 2013. "Bin packing with “Largest In Bottom” constraint: tighter bounds and generalizations," Journal of Combinatorial Optimization, Springer, vol. 26(3), pages 416-436, October.
  • Handle: RePEc:spr:jcomop:v:26:y:2013:i:3:d:10.1007_s10878-011-9408-0
    DOI: 10.1007/s10878-011-9408-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-011-9408-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-011-9408-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leah Epstein, 2009. "On online bin packing with LIB constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(8), pages 780-786, December.
    2. Klaus Jansen, 1999. "An Approximation Scheme for Bin Packing with Conflicts," Journal of Combinatorial Optimization, Springer, vol. 3(4), pages 363-377, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feifeng Zheng & Li Luo & E. Zhang, 2015. "NF-based algorithms for online bin packing with buffer and bounded item size," Journal of Combinatorial Optimization, Springer, vol. 30(2), pages 360-369, August.
    2. Perboli, Guido & Brotcorne, Luce & Bruni, Maria Elena & Rosano, Mariangela, 2021. "A new model for Last-Mile Delivery and Satellite Depots management: The impact of the on-demand economy," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    3. Zhu, Dingju, 2016. "Quasi-human seniority-order algorithm for unequal circles packing," Chaos, Solitons & Fractals, Elsevier, vol. 89(C), pages 506-517.
    4. Minghui Zhang & Xin Han & Yan Lan & Hing-Fung Ting, 2017. "Online bin packing problem with buffer and bounded size revisited," Journal of Combinatorial Optimization, Springer, vol. 33(2), pages 530-542, February.
    5. János Balogh & Leah Epstein & Asaf Levin, 2021. "More on ordered open end bin packing," Journal of Scheduling, Springer, vol. 24(6), pages 589-614, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fleszar, Krzysztof, 2022. "A MILP model and two heuristics for the Bin Packing Problem with Conflicts and Item Fragmentation," European Journal of Operational Research, Elsevier, vol. 303(1), pages 37-53.
    2. Gyorgy Dosa, 2017. "Batched bin packing revisited," Journal of Scheduling, Springer, vol. 20(2), pages 199-209, April.
    3. Ananya Christman & Christine Chung & Nicholas Jaczko & Scott Westvold & David S. Yuen, 2022. "Robustly assigning unstable items," Journal of Combinatorial Optimization, Springer, vol. 44(3), pages 1556-1577, October.
    4. Ulrich Pferschy & Joachim Schauer, 2013. "The maximum flow problem with disjunctive constraints," Journal of Combinatorial Optimization, Springer, vol. 26(1), pages 109-119, July.
    5. Lijun Wei & Zhixing Luo, & Roberto Baldacci & Andrew Lim, 2020. "A New Branch-and-Price-and-Cut Algorithm for One-Dimensional Bin-Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 428-443, April.
    6. Renatha Capua & Yuri Frota & Luiz Satoru Ochi & Thibaut Vidal, 2018. "A study on exponential-size neighborhoods for the bin packing problem with conflicts," Journal of Heuristics, Springer, vol. 24(4), pages 667-695, August.
    7. Borja Ena & Alberto Gomez & Borja Ponte & Paolo Priore & Diego Diaz, 2022. "Homogeneous grouping of non-prime steel products for online auctions: a case study," Annals of Operations Research, Springer, vol. 315(1), pages 591-621, August.
    8. János Balogh & Leah Epstein & Asaf Levin, 2021. "More on ordered open end bin packing," Journal of Scheduling, Springer, vol. 24(6), pages 589-614, December.
    9. Walaa H. El-Ashmawi & Ahmad Salah & Mahmoud Bekhit & Guoqing Xiao & Khalil Al Ruqeishi & Ahmed Fathalla, 2023. "An Adaptive Jellyfish Search Algorithm for Packing Items with Conflict," Mathematics, MDPI, vol. 11(14), pages 1-28, July.
    10. Samir Elhedhli & Lingzi Li & Mariem Gzara & Joe Naoum-Sawaya, 2011. "A Branch-and-Price Algorithm for the Bin Packing Problem with Conflicts," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 404-415, August.
    11. Jasmin Grabenschweiger & Karl F. Doerner & Richard F. Hartl & Martin W. P. Savelsbergh, 2021. "The vehicle routing problem with heterogeneous locker boxes," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 113-142, March.
    12. Albert E. Fernandes Muritiba & Manuel Iori & Enrico Malaguti & Paolo Toth, 2010. "Algorithms for the Bin Packing Problem with Conflicts," INFORMS Journal on Computing, INFORMS, vol. 22(3), pages 401-415, August.
    13. Ananya Christman & Christine Chung & Nicholas Jaczko & Scott Westvold & David S. Yuen, 0. "Robustly assigning unstable items," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-22.
    14. Wei, Zequn & Hao, Jin-Kao & Ren, Jintong & Glover, Fred, 2023. "Responsive strategic oscillation for solving the disjunctively constrained knapsack problem," European Journal of Operational Research, Elsevier, vol. 309(3), pages 993-1009.
    15. Sergio García & Valentina Cacchiani & Lieselot Vanhaverbeke & Martin Bischoff, 2014. "The table placement problem: a research challenge at the EWI 2007," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 208-226, April.
    16. Ruslan Sadykov & François Vanderbeck, 2013. "Bin Packing with Conflicts: A Generic Branch-and-Price Algorithm," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 244-255, May.
    17. Ekici, Ali, 2023. "A large neighborhood search algorithm and lower bounds for the variable-Sized bin packing problem with conflicts," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1007-1020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:26:y:2013:i:3:d:10.1007_s10878-011-9408-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.