IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v25y2013i4d10.1007_s10878-012-9518-3.html
   My bibliography  Save this article

Some results on the target set selection problem

Author

Listed:
  • Chun-Ying Chiang

    (National Central University)

  • Liang-Hao Huang

    (National Central University)

  • Bo-Jr Li

    (National Sun Yat-sen University)

  • Jiaojiao Wu

    (National Sun Yat-sen University)

  • Hong-Gwa Yeh

    (National Central University)

Abstract

In this paper we consider a fundamental problem in the area of viral marketing, called Target Set Selection problem. We study the problem when the underlying graph is a block-cactus graph, a chordal graph or a Hamming graph. We show that if G is a block-cactus graph, then the Target Set Selection problem can be solved in linear time, which generalizes Chen’s result (Discrete Math. 23:1400–1415, 2009) for trees, and the time complexity is much better than the algorithm in Ben-Zwi et al. (Discrete Optim., 2010) (for bounded treewidth graphs) when restricted to block-cactus graphs. We show that if the underlying graph G is a chordal graph with thresholds θ(v)≤2 for each vertex v in G, then the problem can be solved in linear time. For a Hamming graph G having thresholds θ(v)=2 for each vertex v of G, we precisely determine an optimal target set S for (G,θ). These results partially answer an open problem raised by Dreyer and Roberts (Discrete Appl. Math. 157:1615–1627, 2009).

Suggested Citation

  • Chun-Ying Chiang & Liang-Hao Huang & Bo-Jr Li & Jiaojiao Wu & Hong-Gwa Yeh, 2013. "Some results on the target set selection problem," Journal of Combinatorial Optimization, Springer, vol. 25(4), pages 702-715, May.
  • Handle: RePEc:spr:jcomop:v:25:y:2013:i:4:d:10.1007_s10878-012-9518-3
    DOI: 10.1007/s10878-012-9518-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-012-9518-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-012-9518-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xianliang Liu & Zishen Yang & Wei Wang, 2021. "The t-latency bounded strong target set selection problem in some kinds of special family of graphs," Journal of Combinatorial Optimization, Springer, vol. 41(1), pages 105-117, January.
    2. Haining Jiang, 2020. "Target Set Selection on generalized pancake graphs," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(2), pages 379-389, June.
    3. Boris Brimkov & Derek Mikesell & Illya V. Hicks, 2021. "Improved Computational Approaches and Heuristics for Zero Forcing," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1384-1399, October.
    4. Chun-Ying Chiang & Wei-Ting Huang & Hong-Gwa Yeh, 2016. "Dynamic monopolies and feedback vertex sets in cycle permutation graphs, generalized Petersen graphs and torus cordalis," Journal of Combinatorial Optimization, Springer, vol. 31(2), pages 815-832, February.
    5. Brimkov, Boris & Fast, Caleb C. & Hicks, Illya V., 2019. "Computational approaches for zero forcing and related problems," European Journal of Operational Research, Elsevier, vol. 273(3), pages 889-903.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:25:y:2013:i:4:d:10.1007_s10878-012-9518-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.