IDEAS home Printed from https://ideas.repec.org/a/spr/jcomop/v25y2013i4d10.1007_s10878-012-9492-9.html
   My bibliography  Save this article

A note on optimal pebbling of hypercubes

Author

Listed:
  • Hung-Lin Fu

    (National Chiao Tung University)

  • Kuo-Ching Huang

    (Providence University)

  • Chin-Lin Shiue

    (Chung Yuan Christian University)

Abstract

A pebbling move consists of removing two pebbles from one vertex and then placing one pebble at an adjacent vertex. If a distribution δ of pebbles lets us move at least one pebble to each vertex by applying pebbling moves repeatedly(if necessary), then δ is called a pebbling of G. The optimal pebbling number f′(G) of G is the minimum number of pebbles used in a pebbling of G. In this paper, we improve the known upper bound for the optimal pebbling number of the hypercubes Q n . Mainly, we prove for large n, $f'(Q_{n})=O(n^{3/2}(\frac {4}{3})^{n})$ by a probabilistic argument.

Suggested Citation

  • Hung-Lin Fu & Kuo-Ching Huang & Chin-Lin Shiue, 2013. "A note on optimal pebbling of hypercubes," Journal of Combinatorial Optimization, Springer, vol. 25(4), pages 597-601, May.
  • Handle: RePEc:spr:jcomop:v:25:y:2013:i:4:d:10.1007_s10878-012-9492-9
    DOI: 10.1007/s10878-012-9492-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10878-012-9492-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10878-012-9492-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian Liu & Chaoyi Wang & Ke Xu, 2015. "Large hypertree width for sparse random hypergraphs," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 531-540, April.

    More about this item

    Keywords

    Optimal pebbling; Hypercubes;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jcomop:v:25:y:2013:i:4:d:10.1007_s10878-012-9492-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.